Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Słoński, M." wg kryterium: Autor


Wyświetlanie 1-2 z 2
Tytuł:
Analysis of some problems of experimental mechanics and biomechanics by means the anfis neuro-fuzzy system
Autorzy:
Waszczyszyn, Z.
Słoński, M.
Powiązania:
https://bibliotekanauki.pl/articles/279788.pdf
Data publikacji:
2000
Wydawca:
Polskie Towarzystwo Mechaniki Teoretycznej i Stosowanej
Tematy:
neuro-fuzzy system
vibration of buldings
proximal femurs
fracture toughness
experimental mechanics
Opis:
The Adaptive Neuro-Fuzzy Inference System (ANFIS) has been applied to the analysis of three problems: prediction of fundamental periods of vibrations of 5-storey prefabricated buildings, estimation of proximal femur strength, estimation of fracture toughness of dense concret. The results obtained by means of ANFIS are compared with those empirical formulae and forward neural networks. The ANFIS results have been proven to be superior.
Analiza wybranych zagadnień doświadczalnej mechaniki i biomechaniki za pomocą neuro-rozmytego systemu ANFIS. Adaptacyjny neuro-rozmyty system ANFIS został zastosowany do analizy trzech problemów: określenie podstawowych okresów drgań 5-piętrowych budynków prefabrykowanych, określenie wytrzymałości górnej części kości udowych oraz oszacowanie odporności na zniszczenie betonów ciężkich. Wyniki otrzymane za pomocą systemu ANFIS porównano z wynikami, jakie dają wzory empiryczne i jednokierunkowe sieci neuronowe. Wykazano, że najlepszą dokładność daje system ANFIS.
Źródło:
Journal of Theoretical and Applied Mechanics; 2000, 38, 2; 429-445
1429-2955
Pojawia się w:
Journal of Theoretical and Applied Mechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Application of Monte Carlo filter for computer vision-based Bayesian updating of finite element model
Zastosowanie filtrów Monte Varlo do opartego na widzeniu komputerowym bayesowskiego strojenia modelu MES
Autorzy:
Tekieli, M.
Słoński, M.
Powiązania:
https://bibliotekanauki.pl/articles/368995.pdf
Data publikacji:
2013
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
Bayesian inference
parametric identification
model updating
computer vision
Monte Carlo filter
wnioskowanie bayesowskie
identyfikacja parametryczna
widzenie komputerowe
strojenie modelu
filtr Monte Carlo
Opis:
In this paper we describe Bayesian inference-based approach to the solution of parametric identification problem in the context of updating of a finite element model of a structure. The proposed inverse solution is based on Monte Carlo filter and on the comparison of structure displacements extracted using digital image correlation method during a quasi-static loading and the corresponding displacements predicted by finite element method program. Our approach is applied to the problem of material model parameter identification of an aluminum laboratory-scale frame. The results are also verified by comparing the Monte Carlo filter-based solution with the analytical solution obtained using Kalman filter.
Artykuł przedstawia zastosowanie podejścia opartego na wnioskowaniu bayesowskim do problemu identyfikacji parametrycznej w kontekście strojenia modelu MES konstrukcji. Proponowane rozwiązanie odwrotne opiera się na filtrze Monte Carlo oraz porównaniu przemieszczeń konstrukcji otrzymanych metodą korelacji obrazów cyfrowych podczas quasi statycznej próby obciążeniowej i odpowiadających im przemieszczeń przewidywanych przez program oparty na metodzie elementów skończonych. Nasze podejście zostało zastosowane do identyfikacji parametru modelu materiału aluminiowej ramki laboratoryjnej. Otrzymane wyniki porównano z wynikami otrzymanymi za pomocą filtru Kalmana.
Źródło:
Mechanics and Control; 2013, 32, 4; 171-177
2083-6759
2300-7079
Pojawia się w:
Mechanics and Control
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies