Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Rodewald, Gabriel" wg kryterium: Autor


Wyświetlanie 1-1 z 1
Tytuł:
Autoenkodery. Podstawy budowy wydajnych modeli uczenia maszynowego
Autorzy:
Rodewald, Gabriel
Powiązania:
https://bibliotekanauki.pl/articles/2082264.pdf
Data publikacji:
2022-08
Wydawca:
Warszawska Wyższa Szkoła Informatyki
Tematy:
uczenie maszynowe
uczenie głębokie
autoenkodery
autoenkodery wariacyjne
autoenkodery odszumiające
autoenkodery rzadkie
autoenkodery konwolucyjne
autoenkodery rekurencyjne
Opis:
Autoenkoder jest siecią neuronową złożoną z pary koder-dekoder. Koder odpowiada za redukcję wymiarowości danych w modelu przy jednoczesnym zachowaniu kluczowych cech, niezbędnych do odtworzenia danych wejściowych przez dekoder. Z uwagi na cechy architektury wewnętrznej wyodrębnia się autoenkodery deterministyczne oraz probabilistyczne. Istnieją wyspecjalizowane wersje autoenkoderów odpowiadające tematyce realizowanych modeli uczenia maszynowego, na przykład autoenkodery odszumiające, rekurencyjne, splotowe, wariacyjne lub rzadkie. W artykule zostały przedstawione jedynie najistotniejsze zagadnienia związane z autoenkoderami.
Źródło:
Zeszyty Naukowe Warszawskiej Wyższej Szkoły Informatyki; 2022, 16, 26; 21-60
1896-396X
2082-8349
Pojawia się w:
Zeszyty Naukowe Warszawskiej Wyższej Szkoły Informatyki
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies