Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Ribar, S." wg kryterium: Autor


Wyświetlanie 1-2 z 2
Tytuł:
Water Hydrogen Bonds Study by Opto-Magnetic Fingerprint Technique
Autorzy:
Koruga, Đ.
Miljković, S.
Ribar, S.
Matija, L.
Kojić, D.
Powiązania:
https://bibliotekanauki.pl/articles/1537894.pdf
Data publikacji:
2010-05
Wydawca:
Polska Akademia Nauk. Instytut Fizyki PAN
Tematy:
33.20.Kf
33.57.+c
42.25.Ja
42.30.-d
42.50.Ex
Opis:
Hydrogen bond has dual property, classical (electrostatic interaction based on Coulomb's law) and quantum (wave function based on Schrödinger equation). Since Planck's constant is one of the main criteria for decision which process is quantum, or how much is close to be quantum, we use electrical and magnetic forces of valence electrons, as point of departure, to develop method for opto-magnetic fingerprint of matter. During the study of different type of matter we observed phenomena from spectral convolution data of digital images which characterize matter from both covalent and non-covalent bonding. Since water is matter that is most abundant with hydrogen bonds, we present results of 18.2 MΩ water investigation on different temperature and under influence of constant and variable magnetic fields by opto-magnetic method. Bearing in mind that Linus Pauling, in his book Nature of the Chemical Bond (Cornel University Press, 1939), for the first time presented the systematic concept of the hydrogen bond to the molecular world and its machinery, this paper is written in honor to him and 70th anniversary of one of the most important scientific paradigm.
Źródło:
Acta Physica Polonica A; 2010, 117, 5; 777-781
0587-4246
1898-794X
Pojawia się w:
Acta Physica Polonica A
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Optical Biopsy Method for Breast Cancer Diagnosis Based on Artificial Neural Network Classification οf Fluorescence Landscape Data
Autorzy:
Dramićanin, T.
Zeković, I.
Dimitrijević, B.
Ribar, S.
Dramićanin, M.
Powiązania:
https://bibliotekanauki.pl/articles/1795706.pdf
Data publikacji:
2009-10
Wydawca:
Polska Akademia Nauk. Instytut Fizyki PAN
Tematy:
87.64.kv
84.35.+i
87.19.xj
33.50.-j
Opis:
Supervised self-organizing map, a type of artificial neural network, is applied for classification of human breast tissue samples utilizing data obtained from fluorescence landscape measurements. Female breast tissue samples were taken soon after the surgical resection, identified and stored at -80°C until fluorescence measurements. From fluorescence landscapes obtained in UV-VIS region spectral features showing statistically significant differences between malignant and normal samples are identified and further quantified to serve as a training input to neural network. Additional set of samples was used as a test group input to trained network in order to evaluate performance of proposed optical biopsy method. Classification sensitivity of 83.9% and specificity of 88.9% are found.
Źródło:
Acta Physica Polonica A; 2009, 116, 4; 690-692
0587-4246
1898-794X
Pojawia się w:
Acta Physica Polonica A
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies