Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Ramachandran, K. I." wg kryterium: Autor


Wyświetlanie 1-2 z 2
Tytuł:
Detection and Localization of Audio Event for Home Surveillance Using CRNN
Autorzy:
Suruthhi, V. S.
Smita, V.
Rolant Gini, J.
Ramachandran, K. I.
Powiązania:
https://bibliotekanauki.pl/articles/2055274.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
convolutional recurrent neural network
CRNN
gated recurrent unit
GRU
long short-term memory
LSTM
sound event localization and detection
SELD
Opis:
Safety and security have been a prime priority in people’s lives, and having a surveillance system at home keeps people and their property more secured. In this paper, an audio surveillance system has been proposed that does both the detection and localization of the audio or sound events. The combined task of detecting and localizing the audio events is known as Sound Event Localization and Detection (SELD). The SELD in this work is executed through Convolutional Recurrent Neural Network (CRNN) architecture. CRNN is a stacked layer of convolutional neural network (CNN), recurrent neural network (RNN) and fully connected neural network (FNN). The CRNN takes multichannel audio as input, extracts features and does the detection and localization of the input audio events in parallel. The SELD results obtained by CRNN with the gated recurrent unit (GRU) and with long short-term memory (LSTM) unit are compared and discussed in this paper. The SELD results of CRNN with LSTM unit gives 75% F1 score and 82.8% frame recall for one overlapping sound. Therefore, the proposed audio surveillance system that uses LSTM unit produces better detection and overall performance for one overlapping sound.
Źródło:
International Journal of Electronics and Telecommunications; 2021, 67, 4; 735--741
2300-1933
Pojawia się w:
International Journal of Electronics and Telecommunications
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Detection of Obstructive Sleep Apnea from ECG Signal Using SVM Based Grid Search
Autorzy:
Valavan, K. K.
Manoj, S.
Abishek, S.
Gokull Vijay, T. G.
Vojaswwin, P.
Rolant Gini, J.
Ramachandran, K. I.
Powiązania:
https://bibliotekanauki.pl/articles/1844601.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
ECG signal
grid search
RR interval
sleep apnea
support vector machine
Opis:
Obstructive Sleep Apnea is one common form of sleep apnea and is now tested by means of a process called Polysomnography which is time-consuming, expensive and also requires a human observer throughout the study of the subject which makes it inconvenient and new detection techniques are now being developed to overcome these difficulties. Heart rate variability has proven to be related to sleep apnea episodes and thus the features from the ECG signal can be used in the detection of sleep apnea. The proposed detection technique uses Support Vector Machines using Grid search algorithm and the classifier is trained using features based on heart rate variability derived from the ECG signal. The developed system is tested using the dataset and the results show that this classification system can recognize the disorder with an accuracy rate of 89%. Further, the use of the grid search algorithm has made this system a reliable and an accurate means for the classification of sleep apnea and can serve as a basis for the future development of its screening.
Źródło:
International Journal of Electronics and Telecommunications; 2021, 67, 1; 5-12
2300-1933
Pojawia się w:
International Journal of Electronics and Telecommunications
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies