Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Rahman, Wan" wg kryterium: Autor


Wyświetlanie 1-3 z 3
Tytuł:
Characterisation and molecular dynamic simulations of J15 asparaginase from Photobacterium sp. strain J15
Autorzy:
Yaacob, Mohd
Hasan, Wan
Ali, Mohd
Rahman, Raja
Salleh, Abu
Basri, Mahiran
Leow, Thean
Powiązania:
https://bibliotekanauki.pl/articles/1039206.pdf
Data publikacji:
2014
Wydawca:
Polskie Towarzystwo Biochemiczne
Tematy:
J15 asparaginase
Photobacterium sp.
expression
purification
Molecular Dynamic (MD) simulations
Opis:
Genome mining revealed a 1011 nucleotide-long fragment encoding a type I l-asparaginase (J15 asparaginase) from the halo-tolerant Photobacterium sp. strain J15. The gene was overexpressed in pET-32b (+) vector in E. coli strain Rosetta-gami B (DE3) pLysS and purified using two-step chromatographic methods: Ni2+-Sepharose affinity chromatography and Q-Sepharose anion exchange chromatography. The final specific activity and yield of the enzyme achieved from these steps were 20 U/mg and 49.2%, respectively. The functional dimeric form of J15-asparaginase was characterised with a molecular weight of ~70 kDa. The optimum temperature and pH were 25°C and pH 7.0, respectively. This protein was stable in the presence of 1 mM Ni2+ and Mg2+, but it was inhibited by Mn2+, Fe3+ and Zn2+ at the same concentration. J15 asparaginase actively hydrolysed its native substrate, l-asparagine, but had low activity towards l-glutamine. The melting temperature of J15 asparaginase was ~51°C, which was determined using denatured protein analysis of CD spectra. The Km, Kcat, Kcat/Km of J15 asparaginase were 0.76 mM, 3.2 s-1, and 4.21 s-1 mM-1, respectively. Conformational changes of the J15 asparaginase 3D structure at different temperatures (25°C, 45°C, and 65°C) were analysed using Molecular Dynamic simulations. From the analysis, residues Tyr24, His22, Gly23, Val25 and Pro26 may be directly involved in the 'open' and 'closed' lid-loop conformation, facilitating the conversion of substrates during enzymatic reactions. The properties of J15 asparaginase, which can work at physiological pH and has low glutaminase activity, suggest that this could be a good candidate for reducing toxic effects during cancer treatment.
Źródło:
Acta Biochimica Polonica; 2014, 61, 4; 745-752
0001-527X
Pojawia się w:
Acta Biochimica Polonica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Lockdown effect on carbon monoxide concentration over Malaysia and Indonesia
Autorzy:
Wan Kamarudin, Wan Farahiyah
Irwan, Zildawarni
Yaafar, Mohd Rabani
Mat Amin, Abd Rahman
Powiązania:
https://bibliotekanauki.pl/articles/35556095.pdf
Data publikacji:
2022
Wydawca:
Szkoła Główna Gospodarstwa Wiejskiego w Warszawie. Wydawnictwo Szkoły Głównej Gospodarstwa Wiejskiego w Warszawie
Tematy:
carbon monoxide
CO
COVID-19
lockdown
pandemic
MERRA-2
Giovanni 4
Opis:
An increase in Indonesian forest fires has infuriated Malaysia and Indonesia, where residents are inhaling smoke from peat and trees burned hundreds of miles away. The global COVID-19 lockdowns caused carbon monoxide (CO) emissions decreased seen over Malaysia and Indonesia regions. The main objective of this study is to investigate the CO distribution over Malaysia and Indonesia, within the period of January 2011 to December 2021. The impact of lockdown due to COVID-19 pandemic in 2020 and 2021 to CO concentration over Malaysia and Indonesia also was reviewed. This study utilizes MERRA-2 dataset provided by Giovanni interface. Five areas were found to be affected the most during the study period which is Kuala Lumpur, Jambi, Riau, Palembang, and Jakarta. Carbon monoxide concentration over the studied region exhibits a strong seasonality showing maximum value in dry season (July to October). September 2019 is found to have the highest trend of CO concentration affected Jambi region. As COVID-19 pandemic hit the whole world by end of year 2019, all the studied regions shown the decreasing trend after September 2019 and no high peak was observed during dry season (July to October) in 2020 and 2021. This is the combined effect of wetter dry season and an impact of lockdown implemented by government of Malaysia and Indonesia.
Źródło:
Scientific Review Engineering and Environmental Sciences; 2022, 31, 2; 124-134
1732-9353
Pojawia się w:
Scientific Review Engineering and Environmental Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Removal of Cadmium using Alkaline-Treated Activated Carbon from Leucaena Leucocephala Biomass
Autorzy:
Ibrahim, W. M. H. W.
Sulaiman, Nurul Syuhada
Amini, Mohd Hazim Mohammad
Kadir, W. R. A.
Mohamed, Mazlan
Ramle, Sitti Fatimah Mhd
Bilgin, Ugur
Rahman, Wan
Powiązania:
https://bibliotekanauki.pl/articles/2125550.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
activated carbon
cadmium
Leucaena leucocephala
adsorption
Opis:
Water contamination that caused by heavy metals is a very common phenomenon in the industrial age. One of the popular way to treat metal contaminated water is by adsorption process using activated carbon as the adsorbent. This paper works on producing activated carbon by chemical means with impregnation ratios of NaOH:char (w/w) was predetermined at 1:1 (ACT1-1), 2:1 (ACT2-1) and 3:1 (ACT3-1) under activation temperature of 700°C. Considering the Leucaena leucocephala is a wildly, easy and fast grown species, with the availability throught the year, it was chosen to be used as the precursor. The properties of these activated carbons and its potential for cadmium removal from aqueus solution was analyzed. It was found that the highest surface area was recorded at 662.76 m²/g. Four parameters were studied which are contact time, the effect of pH, initial concentration of adsorbate and temperature. The equilibrium time was achieved in 40 min treatment at initial concentrations of 30 mg/l. The adsorbent exhibited good sorption potential for cadmium at pH 8.0 and equilibrium temperature of 30℃. Based on the results, this study had proved that activated carbon from Leucaena leucocephala biomass have the good potential to be used for removal of cadmium from wastewater.
Źródło:
Archives of Metallurgy and Materials; 2022, 67, 3; 1033--1036
1733-3490
Pojawia się w:
Archives of Metallurgy and Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies