Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Quintanilla, R." wg kryterium: Autor


Wyświetlanie 1-2 z 2
Tytuł:
The Energy Method for Elastic Problems With Non-Homogeneous Boundary Conditions
Autorzy:
Quintanilla, R.
Powiązania:
https://bibliotekanauki.pl/articles/907887.pdf
Data publikacji:
2002
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
matematyka
weighted energy method
decay estimates
Navier equations
non-homogeneous boundary conditions
Opis:
In this paper we propose the weighted energy method as a way to study estimates of solutions of boundary-value problems with non-homogeneous boundary conditions in elasticity. First, we use this method to study spatial decay estimates in two-dimensional elasticity when we consider non-homogeneous boundary conditions on the boundary. Some comments in the case of harmonic vibrations are considered as well. We also extend the arguments to a class of three-dimensional problems in a cylinder. A section is devoted to the study of an ill-posed problem. Some remarks are presented in the last section of the paper.In this paper we propose the weighted energy method as a way to study estimates of solutions of boundary-value problems with non-homogeneous boundary conditions in elasticity. First, we use this method to study spatial decay estimates in two-dimensional elasticity when we consider non-homogeneous boundary conditions on the boundary. Some comments in the case of harmonic vibrations are considered as well. We also extend the arguments to a class of three-dimensional problems in a cylinder. A section is devoted to the study of an ill-posed problem. Some remarks are presented in the last section of the paper.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2002, 12, 1; 91-100
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On the fully discrete approximations of the MGT two-temperatures thermoelastic problem
Autorzy:
Baldonedo, J.
Fernández, J. R.
Quintanilla, R.
Powiązania:
https://bibliotekanauki.pl/articles/38695700.pdf
Data publikacji:
2022
Wydawca:
Instytut Podstawowych Problemów Techniki PAN
Tematy:
two-temperatures thermoelasticity
finite elements
priori error estimates
numerical simulations
Opis:
We consider a one-dimensional two-temperatures thermoelastic model. The corresponding variational problem leads to a coupled system which is written in terms of the mechanical velocity, the temperature speed and the inductive temperature. An existence and uniqueness result is recalled. Then, fully discrete approximations are introduced by using the finite element method and the implicit Euler scheme. A priori error estimates are proved and the linear convergence of the approximations is deduced under suitable additional regularity conditions. Finally, some numerical simulations are shown to demonstrate the accuracy of the proposed algorithm and the behavior of the discrete energy.
Źródło:
Archives of Mechanics; 2022, 74, 5; 391-407
0373-2029
Pojawia się w:
Archives of Mechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies