Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Pural, Yusuf Enes" wg kryterium: Autor


Wyświetlanie 1-2 z 2
Tytuł:
Developing a data-driven soft sensor to predict silicate impurity in iron ore flotation concentrate
Autorzy:
Pural, Yusuf Enes
Powiązania:
https://bibliotekanauki.pl/articles/24148677.pdf
Data publikacji:
2023
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
soft sensor
machine learning
random forest
multi-layer perceptron
flotation
grade estimation
Opis:
Soft sensors are mathematical models that estimate the value of a process variable that is difficult or expensive to measure directly. They can be based on first principle models, data-based models, or a combination of both. These models are increasingly used in mineral processing to estimate and optimize important performance parameters such as mill load, mineral grades, and particle size. This study investigates the development of a data-driven soft sensor to predict the silicate content in iron ore reverse flotation concentrate, a crucial indicator of plant performance. The proposed soft sensor model employs a dataset obtained from Kaggle, which includes measurements of iron and silicate content in the feed to the plant, reagent dosages, weight and pH of pulp, as well as the amount of air and froth levels in the flotation units. To reduce the dimensionality of the dataset, Principal Component Analysis, an unsupervised machine learning method, was applied. The soft sensor model was developed using three machine learning algorithms, namely, Ridge Regression, Multi-Layer Perceptron, and Random Forest. The Random Forest model, created with non-reduced data, demonstrated superior performance, with an R-squared value of 96.5% and a mean absolute error of 0.089. The results suggest that the proposed soft sensor model can accurately predict the silicate content in the iron ore flotation concentrate using machine learning algorithms. Moreover, the study highlights the importance of selecting appropriate algorithms for soft sensor developments in mineral processing plants.
Źródło:
Physicochemical Problems of Mineral Processing; 2023, 59, 5; art. no. 169823
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Effective circulating load ratio in mill circuit for milling capacity and further flotation process : lab scale study
Autorzy:
Pural, Yusuf Enes
Çelik, Muhammed
Özer, Mustafa
Boylu, Feridun
Powiązania:
https://bibliotekanauki.pl/articles/2146931.pdf
Data publikacji:
2022
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
circulating load
mill capacity
flotation performance
Opis:
The design of the grinding circuits and the control of the transferring load in the ore preparation plants are of great importance from a technical and economic point of view. The importance of the circulating load for grinding process is well known and stated in the literature. However, there are not many studies on the effect on the following processes. In this study, the effect of the circulating load on both the grinding capacity and the subsequent flotation process was investigated at laboratory scale. Copper ore was used in the experiments. The circulating load was adjusted by changing the residence time of the material in the mill. Then, flotation experiments were carried out with the materials obtained at different circuit loads. The results showed that the grinding capacity can be increased up to 180% by optimizing the circulating load and it will positively affect the flotation performance. It was observed that a concentrate with the highest recovery for the same Cu grade was obtained with CLR of 150 % when compared to flotation recoveries through various CLRs. It is suggested that the circulating load should not be evaluated only in terms of the grinding process, but also the subsequent processes should be considered. Future studies in this area may contribute to industrial applications.
Źródło:
Physicochemical Problems of Mineral Processing; 2022, 58, 5; art. no. 149916
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies