Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Prasetyo, Syarif" wg kryterium: Autor


Wyświetlanie 1-3 z 3
Tytuł:
Characterization of Three Selected Macrophytes – An Ecological Engineering Approach for Effective Rehabilitation of Rawapening Lake
Autorzy:
Izzati, Munifatul
Soeprobowati, Tri Retnaningsih
Prasetyo, Syarif
Powiązania:
https://bibliotekanauki.pl/articles/2173368.pdf
Data publikacji:
2022
Wydawca:
Polskie Towarzystwo Inżynierii Ekologicznej
Tematy:
rawapening
Hydrilla verticillata
Eichhornia crassipes
Salvinia molesta
rehabilitation
Opis:
Rawapening is one of Indonesia’s national priority lakes, which is experiencing environmental damage and urgently needs rehabilitation. The decline in water quality is caused by sedimentation and organic and inorganic waste that triggers eutrophication. Rehabilitation of Lake Rawapening is important to improve the health of freshwater resources. The ecological engineering approach is the most appropriate choice to rehabilitate these water conditions. The character of the macrophyte is the key factor for successful rehabilitation. Three macrophytes, Hydrilla verticillata (L. f.) Royle, Eichhornia crassipes (Mart.) Solms and Salvinia molesta D.Mitch., charactierized. Their characteristics, including growth rate, salt tolerance, dissolved oxygen production and consumption, nutritive value, and preferred food by herbivore fish were evaluated. The results indicated that H. verticillata has the highest growth rate, is the most tolerant to salinity change, produces more oxygen, has the highest nutritive value, and is the most preferred food for herbivore fish. H. verticilata is recommended as the best candidate to be used as a forcing function to drive the Rawapening lake into more economic and environmentally valuable for a resident. As the other two species also have high nutritive value, they can be recommended as a source of feed for animals as well. For better management, these two macrophytes required more often regular removal. Other economic and environmental values can also be achieved from E. crassipes and S. molesta.
Źródło:
Journal of Ecological Engineering; 2022, 23, 9; 277--287
2299-8993
Pojawia się w:
Journal of Ecological Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The Growth Rate of Water Hyacinth (Eichhornia crassipes (Mart.) Solms) in Rawapening Lake, Central Java
Autorzy:
Prasetyo, Syarif
Anggoro, Sutrisno
Soeprobowati, Tri Retnaningsih
Powiązania:
https://bibliotekanauki.pl/articles/1838296.pdf
Data publikacji:
2021
Wydawca:
Polskie Towarzystwo Inżynierii Ekologicznej
Tematy:
Rawapening
Eichhornia crassipes
mesocosm
relative growth rate
doubling time
Opis:
Rawapening Lake is one of Indonesia’s national priority lakes that is experiencing environmental problems which are urgently required to be solved due to its functions. The decline in the environmental quality of Rawapening Lake includes sedimentation, water pollution and excess of nutrients, especially Phosphorus (P) and Nitrogen (N) into the lake that induced uncontrolled growth of aquatic plants, one of which is water hyacinth (Eichhornia crassipes (Mart.) Solms). Many activities had been done to reduce the covering of water hyacinth in Rawapening Lake that tends to increase by the time, but no significant result has been achieved. Therefore, this research was conducted in order to study the growth rate of water hyacinth with mesocosm in Rawapening Lake as a baseline to develop suitable management. There were three different sites, namely: Site I in the floating net cage area (FNCA), Rowoboni Village, Site II in the natural area of Bejalen Village which is far from the aquaculture sites, and Site III in the upper reaches of the Tuntang river, Asinan Village. The research was performed in November-December 2019 with the measurements of growth rate, addition number clump and water hyacinth covering every week. The experiment was conducted in the 1 x 1 meter mesocosm, with three replication in every site. In every mesocosm water hyacinth with similar initial weight of 160 grams and number of leaves 6-7 strands were grown in the mesocosm. On day 7 (H7) the average wet weight of water hyacinth increased by 201%. In the fourth week (H28) the average wet weight of water hyacinth increased by 788% compared to the initial weight when planted. The highest relative growth rate (RGR) value of water hyacinth was at site III (7.26%/ day), followed by Site I (7.03%/day), and Site II (6.40%/day), respectively. The doubling time (DT) value of water hyacinth at the site I was 9.9 day, site II – 10.8 day, and site III – 9.6 day. One clump of water hyacinth weighing 160 grams was able to cover 1 m2 of mesocosm within 21 days. On the basis of these results, to manage water hyacinth blooms one has to consider its growth rate.
Źródło:
Journal of Ecological Engineering; 2021, 22, 6; 222-231
2299-8993
Pojawia się w:
Journal of Ecological Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The Growth Rate of Water Hyacinth (Eichhornia crassipes (Mart.) Solms) in Rawapening Lake, Central Java
Autorzy:
Prasetyo, Syarif
Anggoro, Sutrisno
Soeprobowati, Tri Retnaningsih
Powiązania:
https://bibliotekanauki.pl/articles/1838362.pdf
Data publikacji:
2021
Wydawca:
Polskie Towarzystwo Inżynierii Ekologicznej
Tematy:
Rawapening
Eichhornia crassipes
mesocosm
relative growth rate
doubling time
Opis:
Rawapening Lake is one of Indonesia’s national priority lakes that is experiencing environmental problems which are urgently required to be solved due to its functions. The decline in the environmental quality of Rawapening Lake includes sedimentation, water pollution and excess of nutrients, especially Phosphorus (P) and Nitrogen (N) into the lake that induced uncontrolled growth of aquatic plants, one of which is water hyacinth (Eichhornia crassipes (Mart.) Solms). Many activities had been done to reduce the covering of water hyacinth in Rawapening Lake that tends to increase by the time, but no significant result has been achieved. Therefore, this research was conducted in order to study the growth rate of water hyacinth with mesocosm in Rawapening Lake as a baseline to develop suitable management. There were three different sites, namely: Site I in the floating net cage area (FNCA), Rowoboni Village, Site II in the natural area of Bejalen Village which is far from the aquaculture sites, and Site III in the upper reaches of the Tuntang river, Asinan Village. The research was performed in November-December 2019 with the measurements of growth rate, addition number clump and water hyacinth covering every week. The experiment was conducted in the 1 x 1 meter mesocosm, with three replication in every site. In every mesocosm water hyacinth with similar initial weight of 160 grams and number of leaves 6-7 strands were grown in the mesocosm. On day 7 (H7) the average wet weight of water hyacinth increased by 201%. In the fourth week (H28) the average wet weight of water hyacinth increased by 788% compared to the initial weight when planted. The highest relative growth rate (RGR) value of water hyacinth was at site III (7.26%/ day), followed by Site I (7.03%/day), and Site II (6.40%/day), respectively. The doubling time (DT) value of water hyacinth at the site I was 9.9 day, site II – 10.8 day, and site III – 9.6 day. One clump of water hyacinth weighing 160 grams was able to cover 1 m2 of mesocosm within 21 days. On the basis of these results, to manage water hyacinth blooms one has to consider its growth rate.
Źródło:
Journal of Ecological Engineering; 2021, 22, 6; 222-231
2299-8993
Pojawia się w:
Journal of Ecological Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies