Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Powroźnik, Kamil" wg kryterium: Autor


Wyświetlanie 1-2 z 2
Tytuł:
Statuses and double branch weights of quadrangular outerplanar graphs
Autorzy:
Bielak, Halina
Powroźnik, Kamil
Powiązania:
https://bibliotekanauki.pl/articles/747004.pdf
Data publikacji:
2015
Wydawca:
Uniwersytet Marii Curie-Skłodowskiej. Wydawnictwo Uniwersytetu Marii Curie-Skłodowskiej
Tematy:
Centroid
median
outerplanar graph
status
tree
Opis:
In this paper we study some distance properties of outerplanar graphs with the Hamiltonian cycle whose all bounded faces are cycles isomorphic to the cycle C4. We call this family of graphs quadrangular outerplanar graphs. We give the lower and upper bound on the double branch weight and the status for this graphs. At the end of this paper we show some relations between median and double centroid in quadrangular outerplanar graphs.
Źródło:
Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica; 2015, 69, 1
0365-1029
2083-7402
Pojawia się w:
Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The density Turan problem for 3-uniform linear hypertrees. An efficient testing algorithm
Autorzy:
Bielak, Halina
Powroźnik, Kamil
Powiązania:
https://bibliotekanauki.pl/articles/747155.pdf
Data publikacji:
2018
Wydawca:
Uniwersytet Marii Curie-Skłodowskiej. Wydawnictwo Uniwersytetu Marii Curie-Skłodowskiej
Tematy:
Uniform linear hypertree
blow-up hypergraph
transversal
Turan density
Opis:
Let \(\mathcal{T}=(V,\mathcal{E})\) be a  3-uniform linear hypertree. We consider a blow-up hypergraph \(\mathcal{B}[\mathcal{T}]\). We are interested in the following problem. We have to decide whether there exists a blow-up hypergraph \(\mathcal{B}[\mathcal{T}]\) of the hypertree \(\mathcal{T}\), with hyperedge densities satisfying some conditions, such that the hypertree \(\mathcal{T}\) does not appear in a blow-up hypergraph as a transversal. We present an efficient algorithm to decide whether a given set of hyperedge densities ensures the existence of a 3-uniform linear hypertree \(\mathcal{T}\) in a blow-up hypergraph \(\mathcal{B}[\mathcal{T}]\).
Źródło:
Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica; 2018, 72, 2
0365-1029
2083-7402
Pojawia się w:
Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies