- Tytuł:
- On the local meromorphic extension of CR meromorphic mappings
- Autorzy:
-
Merker, Joël
Porten, Egmont - Powiązania:
- https://bibliotekanauki.pl/articles/1294226.pdf
- Data publikacji:
- 1998
- Wydawca:
- Polska Akademia Nauk. Instytut Matematyczny PAN
- Tematy:
-
CR generic currents
scarred CR manifolds
removable singularities for CR functions
deformations of analytic discs
CR meromorphic mappings - Opis:
- Let M be a generic CR submanifold in $ℂ^{m+n}$, m = CR dim M ≥ 1, n = codim M ≥ 1, d = dim M = 2m + n. A CR meromorphic mapping (in the sense of Harvey-Lawson) is a triple $(f,_f,[Γ_f])$, where: 1) $f: _f → Y$ is a ¹-smooth mapping defined over a dense open subset $_f$ of M with values in a projective manifold Y; 2) the closure $Γ_f$ of its graph in $ℂ^{m+n} × Y$ defines an oriented scarred ¹-smooth CR manifold of CR dimension m (i.e. CR outside a closed thin set) and 3) $d[Γ_f] = 0$ in the sense of currents. We prove that $(f,_f,[Γ_f])$ extends meromorphically to a wedge attached to M if M is everywhere minimal and $^ω$ (real-analytic) or if M is a $^{2,α}$ globally minimal hypersurface.
- Źródło:
-
Annales Polonici Mathematici; 1998, 70, 1; 163-193
0066-2216 - Pojawia się w:
- Annales Polonici Mathematici
- Dostawca treści:
- Biblioteka Nauki