Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Othmani, M." wg kryterium: Autor


Wyświetlanie 1-4 z 4
Tytuł:
Topology optimization of a 3D part virtually printed by FDM
Autorzy:
Antar, I.
Othmani, M.
Zarbane, K.
El Oumami, M.
Beidouri, Z.
Powiązania:
https://bibliotekanauki.pl/articles/2172164.pdf
Data publikacji:
2022
Wydawca:
Stowarzyszenie Komputerowej Nauki o Materiałach i Inżynierii Powierzchni w Gliwicach
Tematy:
topology optimization
fused deposition modelling
virtually 3D printed part
SIMP
optymalizacja topologii
modelowanie osadzania stopionego
drukowanie 3D
Opis:
Purpose This research work aims to exhibit the possibility to topologically optimize a mesostructured part printed virtually by FDM taking into account the manufacturing parameters. Design/methodology/approach The topology optimization of a 3D part printed by FDM was carried out using the software ABAQUS. On the other hand, a numerical approach using a script based on G-code file has been achieved to create a virtual model. Then, it was optimized according to the Solid Isotropic Material with Penalization (SIMP) method, which minimizing the strain energy was the objective function and the volume fraction of 30% was the constraint. Findings The final topological optimization design of the virtual model is approximately similar to the homogeneous part. Furthermore, the strain energy of the virtual model is less than the homogeneous part. However, the virtually 3D optimized part volume is higher than the homogeneous one. Research limitations/implications In this study, we have limited our study on one layer owing to reduce the simulation time. Moreover, the time required to optimize the virtual model is inordinate. The ensuing study, we will optimize a multiple layer of the mesostructure. Practical implications Our study provides a powerful method to optimize with accurately a mesostructure taken into consideration the manufacturing setting. Originality/value In this paper, we have studied through an original approach the potential of topology optimization of a 3D part virtually printed by FDM. By means of our approach, we were able to optimize topologically the 3D parts printed by FDM taking into account the manufacturing parameters.
Źródło:
Journal of Achievements in Materials and Manufacturing Engineering; 2022, 112, 1; 25--32
1734-8412
Pojawia się w:
Journal of Achievements in Materials and Manufacturing Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Effect of infill and density pattern on the mechanical behaviour of ABS parts manufactured by FDM using Taguchi and ANOVA approach
Autorzy:
Othmani, M.
Zarbane, K.
Chouaf, A.
Powiązania:
https://bibliotekanauki.pl/articles/2175753.pdf
Data publikacji:
2021
Wydawca:
Stowarzyszenie Komputerowej Nauki o Materiałach i Inżynierii Powierzchni w Gliwicach
Tematy:
fused deposition modelling
infill pattern
infill density
finite element analysis
Taguchi
modelowanie metodą osadzania topionego
wzór wypełnienia
gęstość wypełnienia
analiza elementów skończonych
Opis:
Purpose: The present work aims to investigate the effect of many infill patterns (rectilinear, line, grid, triangles, cubic, concentric, honeycomb, 3D honeycomb) and the infill density on the mechanical tensile strength of an Acrylonitrile Butadiene Styrene (ABS) test specimen manufactured numerically by FDM. Design/methodology/approach: Computer-Aided Design (CAD) software has been used to model the geometry and the mesostructure of the test specimens in a fully automatic manner from a G-code file by using a script. Then, a Numerical Design of Experiments (NDoE) has been carried out by using Taguchi method and the Analysis of Variance (ANOVA). The tensile behaviour of these numerical test specimens has been studied by the Finite Element Analysis (FEA). Findings: The FEA results showed that a maximal Ultimate Tensile Strength (UTS) was reached by using the ‘concentric’ infill pattern combined with an infill density of 30%. The results also show that the infill pattern and the infill density are significant factors. Research limitations/implications: The low infill densities of 20% and 30% that have already been used in many previous studies, we have also applied it in order to reduce the time of the simulations. Indeed, with high infill density, the simulations take a very excessive time. In an ongoing study, we predicted higher percentages. Practical implications: This study provided an important modelling tool for the design and manufacture of functional parts and helps the FDM practitioners and engineers to manufacture strong and lightweight FDM parts by choosing the optimal process parameters. Originality/value: This study elucidated the effect of various infill patterns on the tensile properties of the test specimens and applied for the first time a NDoE using numerical test specimens created by the mesostructured approach, which considerably minimized the cost of the experiments while obtaining an error of 6.8% between the numerical and the experimental values of the UTS.
Źródło:
Archives of Materials Science and Engineering; 2021, 111, 2; 66--77
1897-2764
Pojawia się w:
Archives of Materials Science and Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Fracture toughness of ABS additively manufactured by FDM process
Autorzy:
Aourik, O.
Othmani, M.
Saadouki, B.
Abouzaid, Kh.
Chouaf, A.
Powiązania:
https://bibliotekanauki.pl/articles/2055746.pdf
Data publikacji:
2021
Wydawca:
Stowarzyszenie Komputerowej Nauki o Materiałach i Inżynierii Powierzchni w Gliwicach
Tematy:
FDM
raster angle
ABS
tenacity
damage
simulation
grafika rastrowa
kąty rastra
wytrzymałość
uszkodzenia
symulacja
Opis:
Purpose: The purpose on this article is to study the failure of FDM printed ABS by exhibiting an exhaustive crack growth analysis mainly based on raster angle parameter. Design/methodology/approach: Two approaches have been developed in this study; On one hand, mechanical experiments were carried out to determine the critical stress intensity factor KIC. On the other hand, numerical analysis was used to predict the paths within the part as well as the crack propagation. Findings: This work has clearly shown the effect of raster angle on the damage mechanism of the ABS printed by FDM. Indeed, for the combination 1 (0°/90°), the structure presents an important stiffness and a high degree of stress distribution symmetry with respect to the notch. Moreover, the crack propagation is regular and straight, and the damage surfaces are on the same plane. However, for the combination 2 (-45°/45°), the structure is less resistant with an asymmetrical stress distribution according to two different planes. Research limitations/implications: In order to present an exhaustive study, we focused on the effect of two raster angles (including 0°/90°, -45°/45°) on the ABS crack propagation, additively manufactured. This study is still in progress for other raster angles, and will be developed from a design of experiments (DoE) design that incorporates all relevant factors. To highlight more the cracking mechanisms, microscopic observations will be developed in more depth. Practical implications: Our analysis can be used as a decision aid in the design of FDM parts. Indeed, we can choose the raster angle that would ensure the desired crack propagation resistance for a functional part. Originality/value: In this article, we have analyzed the mechanism of damage and crack propagation. This topic represents a new orientation for many research papers. For our study, we accompanied our experimental approach with an original numerical approach. In this numerical approach, we were able to mesh distinctly raster by raster for all layers.
Źródło:
Journal of Achievements in Materials and Manufacturing Engineering; 2021, 109, 2; 49--58
1734-8412
Pojawia się w:
Journal of Achievements in Materials and Manufacturing Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Effect of Liner Characteristics on the Acoustic Performance of Duct Systems
Autorzy:
Othmani, C.
Hentati, T.
Taktak, M.
Elnady, T.
Fakhfakh, T.
Haddar, M.
Powiązania:
https://bibliotekanauki.pl/articles/176887.pdf
Data publikacji:
2015
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
porous material
perforated plate
duct system
scattering matrix
acoustic attenuation
Opis:
Porous materials are used in many vibro-acoustic applications. Different models describe their performance according to material’s intrinsic characteristics. In this paper, an evaluation of the effect of the porous and geometrical parameters of a liner on the acoustic power attenuation of an axisymmetric lined duct was performed using multimodal scattering matrix. The studied liner is composed by a porous material covered by a perforated plate. Empirical and phenomenal models are used to calculate the acoustic impedance of the studied liner. The later is used as an input to evaluate the duct attenuation. By varying the values of each parameter, its influence is observed, discussed and deduced.
Źródło:
Archives of Acoustics; 2015, 40, 1; 117-127
0137-5075
Pojawia się w:
Archives of Acoustics
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies