Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Ortega Salvador, Pedro" wg kryterium: Autor


Wyświetlanie 1-1 z 1
Tytuł:
Weighted inequalities for one-sided maximal functions in Orlicz spaces
Autorzy:
Ortega Salvador, Pedro
Powiązania:
https://bibliotekanauki.pl/articles/1217888.pdf
Data publikacji:
1998
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Tematy:
one-sided maximal functions
weighted inequalities
weights
Orlicz spaces
Opis:
Let $M_{g}^{+}$ be the maximal operator defined by $M_{g}^{+}⨍(x) = \underset{h>0}{\text{sup}} (ʃ_{x}^{x+h} |⨍|g)/(ʃ_{x}^{x+h} g)$, where g is a positive locally integrable function on ℝ. Let Φ be an N-function such that both Φ and its complementary N-function satisfy $Δ_2$. We characterize the pairs of positive functions (u,ω) such that the weak type inequality $u({x ∈ ℝ | M_{g}^{+}⨍(x) > λ}) ≤ C/(Φ(λ)) \int_ℝ Φ(|⨍|)ω$ holds for every ⨍ in the Orlicz space $L_Φ(ω)$. We also characterize the positive functions ω such that the integral inequality $\int_ℝ Φ(|M_{g}^{+}⨍|)ω ≤ \int_ℝ Φ(|⨍|)ω$ holds for every $⨍ ∈ L_Φ(ω)$. Our results include some already obtained for functions in $L^p$ and yield as consequences one-dimensional theorems due to Gallardo and Kerman-Torchinsky.
Źródło:
Studia Mathematica; 1998, 131, 2; 101-114
0039-3223
Pojawia się w:
Studia Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies