Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Orpel, Aleksandra" wg kryterium: Autor


Wyświetlanie 1-2 z 2
Tytuł:
Positive stationary solutions of convection-diffusion equations for superlinear sources
Autorzy:
Orpel, Aleksandra
Powiązania:
https://bibliotekanauki.pl/articles/2216153.pdf
Data publikacji:
2022
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
semipositone problems
positive stationary solutions
minimal solutions with finite energy
sub and supersolutions methods
Opis:
We investigate the existence and multiplicity of positive stationary solutions for a certain class of convection-diffusion equations in exterior domains. This problem leads to the following elliptic equation Δu(x) + f(x, u(x)) + g(x)x · ∇u(x) = 0, for x ∈ ΩR = {x ∈ Rn, ∥x∥ > R}, n > 2. The goal of this paper is to show that our problem possesses an uncountable number of nondecreasing sequences of minimal solutions with finite energy in a neighborhood of infinity. We also prove that each of these sequences generates another solution of the problem. The case when f(x, ·) may be negative at the origin, so-called semipositone problem, is also considered. Our results are based on a certain iteration schema in which we apply the sub and supersolution method developed by Noussair and Swanson. The approach allows us to consider superlinear problems with convection terms containing functional coefficient g without radial symmetry.
Źródło:
Opuscula Mathematica; 2022, 42, 5; 727-749
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Selected methods for nonlinear boundary value problems
Autorzy:
Przeradzki, Bogdan
Izydorek, Marek
Orpel, Aleksandra
Powiązania:
https://bibliotekanauki.pl/books/2014445.pdf
Data publikacji:
2021
Wydawca:
Politechnika Łódzka. Wydawnictwo Politechniki Łódzkiej
Opis:
The following book deals with various boundary value problems for differential equations. As Juliusz Schauder, one of the pioneers and unsurpassed masters (at least for the author), used to say, the most important thing is to know the methods, not the theorems. Thus, we are interested in a set of methods of Nonlinear Analysis applied to such boundary value problems. Since we want to avoid the difficulties associated with partial equations (already the theory of linear partial differential equations requires the use of subtle concepts and tools of Functional Analysis), we choose examples showing applications of the above-mentioned methods among ordinary differential equations. We are interested in nonlinear equations, but the boundary conditions we discuss are usually linear. By boundary conditions, we mean here any additional equations that the solutions of the differential equation are expected to satisfy. Such additional conditions are necessary if we want to have one (or more) solutions - after all, a given differential equation has infinitely many solutions. These additional conditions may be initial conditions, conditions to be satisfied by the function at the extremes of the domain (boundary conditions), but they may also be multipoint or, more broadly, nonlocal e.g. when there is an integral of the solution in the equation. On the other hand, the wealth of methods of nonlinear analysis is so great that we emphasize a certain set of methods (mainly topological) preferred by the author. The examples on which we present applications of these methods are in majority taken from the work of the research team that consists of the author and his former PhD students. Thus, this survey is not a monograph of the subject in a strict sense, which is reflected in the first word of the title "Selected".
Dostawca treści:
Biblioteka Nauki
Książka
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies