Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Opaliński, Andrzej" wg kryterium: Autor


Wyświetlanie 1-4 z 4
Tytuł:
Information and Decision System Supporting the Production of ADI Cast Iron Products
Autorzy:
Opaliński, Andrzej
Wilk-Kołodziejczyk, Dorota
Powiązania:
https://bibliotekanauki.pl/articles/2049745.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
decision support
information system
ADI casting
austempered ductile cast iron
ADI
Opis:
The presented article concerns the issue of supporting the ADI cast iron product manufacturing process and presents an IT system dedicated mainly to designers and technologists. Designers can be supported at the stage of selecting types of materials and technologies (including ADI cast iron) to produce products with required properties. Technologists can obtain support in determining the parameters (temperature and chemical) of the ADI cast iron manufacturing process in order to obtain products with specific properties. The system also contains an information resources (standards, documentation, examples) concerning ADI cast iron and products made of it. Examples of use by individual system users are presented as a case study.
Źródło:
Archives of Metallurgy and Materials; 2021, 66, 2; 651-657
1733-3490
Pojawia się w:
Archives of Metallurgy and Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Artificial Neural Networks as a Tool for Supporting a Moulding Sand Control System Based on the Dependency between Selected Moulding Sand Properties
Autorzy:
Mrzygłód, Barbara
Jakubski, Jarosław
Opaliński, Andrzej
Regulski, Krzysztof
Powiązania:
https://bibliotekanauki.pl/articles/24201264.pdf
Data publikacji:
2023
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
artificial neural network
decision support
green moulding sand
compactibility
Opis:
The article presents the potential for using artificial neural networks to support decisions related to the rebonding of green moulding sand. The basic properties of the moulding sand tested in foundries are discussed, especially compactibility as it gives the most information about the quality of green moulding sand. First, the data that can predict the compactibility value without the need for testing are defined. Next, a method for constructing an artificial neural network is presented and the network model which produced the best results is analysed. Additionally, two applications were designed to allow the investigation results to be searchable by determining the range of values of the moulding sand parameters.
Źródło:
Journal of Casting & Materials Engineering; 2023, 7, 2; 15--21
2543-9901
Pojawia się w:
Journal of Casting & Materials Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Bainite transformation time model optimization for Austempered Ductile Iron with the use of heuristic algorithms
Autorzy:
Olejarczyk-Wożeńska, Izabela
Opaliński, Andrzej
Mrzygłód, Barbara
Regulski, Krzysztof
Kurowski, Wojciech
Powiązania:
https://bibliotekanauki.pl/articles/29520068.pdf
Data publikacji:
2022
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
heuristic optimization
bainite
ADI
Particle Swarm Optimization
Evolutionary Optimization Algorithm
Opis:
The paper presents the application of heuristic optimization methods in identifying the parameters of a model for bainite transformation time in ADI (Austempered Ductile Iron). Two algorithms were selected for parameter optimization – Particle Swarm Optimization and Evolutionary Optimization Algorithm. The assumption of the optimization process was to obtain the smallest normalized mean square error (objective function) between the time calculated on the basis of the identified parameters and the time derived from the experiment. As part of the research, an analysis was also made in terms of the effectiveness of selected methods, and the best optimization strategies for the problem to be solved were selected on their basis.
Źródło:
Computer Methods in Materials Science; 2022, 22, 3; 125-136
2720-4081
2720-3948
Pojawia się w:
Computer Methods in Materials Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Prediction of Selected Mechanical Properties in Austempered Ductile Iron with Different Wall Thickness by the Decision Support Systems
Autorzy:
Jaśkowiec, Krzysztof
Opaliński, Andrzej
Kustra, Piotr
Jach, D.
Wilk-Kołodziejczyk, Dorota
Powiązania:
https://bibliotekanauki.pl/articles/27314159.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Czasopisma i Monografie PAN
Tematy:
ADI
austempered ductile iron
mechanical properties
prediction
decision support systems
decision tree
żeliwo sferoidalne
właściwości mechaniczne
prognozowanie
systemy wspomagania decyzji
Opis:
The structure of Austempered Ductile Iron (ADI) is depend of many factors at individual stages of casting production. There is a rich literature documenting research on the relationship between heat treatment and the resulting microstructure of cast alloy. A significant amount of research is conducted towards the use of IT tools for indications production parameters for thin-walled castings, allowing for the selection of selected process parameters in order to obtain the expected properties. At the same time, the selection of these parameters should make it possible to obtain as few defects as possible. The input parameters of the solver is chemical composition Determined by the previous system module. Target wall thickness and HB of the product determined by the user. The method used to implement the solver is the method of Particle Swarm Optimization (PSO). The developed IT tool was used to determine the parameters of heat treatment, which will ensure obtaining the expected value for hardness. In the first stage, the ADI cast iron heat treatment parameters proposed by the expert were used, in the next part of the experiment, the settings proposed by the system were used. Used of the proposed IT tool, it was possible to reduce the number of deficiencies by 3%. The use of the solver in the case of castings with a wall thickness of 25 mm and 41 mm allowed to indication of process parameters allowing to obtain minimum mechanical properties in accordance with the PN-EN 1564:2012 standard. The results obtained by the solver for the selected parameters were verified. The indicated parameters were used to conduct experimental research. The tests obtained as a result of the physical experiment are convergent with the data from the solver.
Źródło:
Archives of Foundry Engineering; 2023, 23, 2; 137--144
1897-3310
2299-2944
Pojawia się w:
Archives of Foundry Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies