Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Ono, Ken" wg kryterium: Autor


Wyświetlanie 1-4 z 4
Tytuł:
On the positivity of the number of t-core partitions
Autorzy:
Ono, Ken
Powiązania:
https://bibliotekanauki.pl/articles/1391631.pdf
Data publikacji:
1994
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Opis:
A partition of a positive integer n is a nonincreasing sequence of positive integers with sum $n.$ Here we define a special class of partitions. \de{1.} Let $t ≥ 1$ be a positive integer. Any partition of n whose Ferrers graph have no hook numbers divisible by t is known as a t- core partition} of $n.$ \vskip 4pt plus 2pt The hooks are important in the representation theory of finite symmetric groups and the theory of cranks associated with Ramanujan's congruences for the ordinary partition function [3,$\,$4,$\,$6]. If $t≥ 1$ and $n ≥ 0$, then we define $c_t(n)$ to be the number of partitions of n that are t-core partitions. The arithmetic of $c_t(n)$ is studied in [3,$\,$4]. The power series generating function for $c_t(n)$ is given by the infinite product: ∑_{n=0}^{∞} c_t(n)q^n= \prod_{n=1}^{∞
Źródło:
Acta Arithmetica; 1994, 66, 3; 221-228
0065-1036
Pojawia się w:
Acta Arithmetica
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies