Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Nowakowski, Maciej." wg kryterium: Autor


Tytuł:
Vibration-based identification of engine valve clearance using a convolutional neural network
Autorzy:
Tabaszewski, Maciej
Szymański, Grzegorz M.
Nowakowski, Tomasz
Powiązania:
https://bibliotekanauki.pl/articles/2124718.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
combustion engine
diagnostics
vibration
machine learning
convolutional network
silnik spalinowy
diagnostyka
drgania
uczenie maszyny
splotowa sieć neuronowa
Opis:
Contemporary operation-related requirements for combustion engines force the necessity of ongoing assessment of their in operation technical condition (e.g. marine engines). The engine efficiency and durability depend on a variety of parameters. One of them is valve clearance. As has been proven in the paper, the assessment of the valve clearance can be based on vibration signals, which is not a problem in terms of signal measurement and processing and is not invasive into the engine structure. The authors described the experimental research aiming at providing information necessary to develop and validate the proposed method. Active experiments were used with the task of valve clearance and registration of vibrations using a three-axis transducer placed on the engine cylinder head. The tests were carried out during various operating conditions of the engine set by 5 rotational speeds and 5 load conditions. In order to extract the training examples, fragments of the signal related to the closing of individual valves were divided into 11 shorter portions. From each of them, an effective value of the signal was determined. Obtained total 32054 training vectors for each valve related to 4 classes of valve clearance including very sensitive clearance above 0.8 mm associated with high dynamic interactions in cylinder head. In the paper, the authors propose to use a convolutional network CNN to assess the correct engine valve clearance. The obtained results were compared with other methods of machine learning (pattern recognition network, random forest). Finally, using CNN the valve clearance class identification error was less than 1% for the intake valve and less than 3.5% for the exhaust valve. Developed method replaces the existing standard methods based on FFT and STFT combined with regression calculation where approximation error is up to 10%. Such results are more useful for further studies related not only to classification, but also to the prediction of the valve clearance condition in real engine operations.
Źródło:
Archives of Transport; 2022, 61, 1; 117--131
0866-9546
2300-8830
Pojawia się w:
Archives of Transport
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analiza porównawcza wyników numerycznego modelowania opływu profilu NACA 63-209 uzyskanych w programach Xfoil oraz Comsol
Autorzy:
Nowakowski, Mirosław.
Panas, Andrzej J.
Żyluk, Andrzej.
Białecki, Maciej (1964- ).
Powiązania:
Zeszyty Naukowe / Wyższa Szkoła Oficerska Sił Powietrznych 2014, nr 1, s. 19-34
Data publikacji:
2014
Tematy:
PZL TS-11 Iskra (samolot) budowa badanie
Analiza numeryczna
Zastosowanie i wykorzystanie
Opis:
Rys., tab.
Dostawca treści:
Bibliografia CBW
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies