- Tytuł:
- Infinite ergodic index $ℤ^d$ -actions in infinite measure
- Autorzy:
-
Muehlegger, E.
Raich, A.
Silva, C.
Touloumtzis, M.
Narasimhan, B.
Zhao, W. - Powiązania:
- https://bibliotekanauki.pl/articles/1396029.pdf
- Data publikacji:
- 1999
- Wydawca:
- Polska Akademia Nauk. Instytut Matematyczny PAN
- Opis:
- We construct infinite measure preserving and nonsingular rank one $ℤ^d$-actions. The first example is ergodic infinite measure preserving but with nonergodic, infinite conservative index, basis transformations; in this case we exhibit sets of increasing finite and infinite measure which are properly exhaustive and weakly wandering. The next examples are staircase rank one infinite measure preserving $ℤ^d$-actions; for these we show that the individual basis transformations have conservative ergodic Cartesian products of all orders, hence infinite ergodic index. We generalize this example to obtain a stronger condition called power weakly mixing. The last examples are nonsingular $ℤ^d$-actions for each Krieger ratio set type with individual basis transformations with similar properties.
- Źródło:
-
Colloquium Mathematicum; 1999, 82, 2; 167-190
0010-1354 - Pojawia się w:
- Colloquium Mathematicum
- Dostawca treści:
- Biblioteka Nauki