Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Muir, B." wg kryterium: Autor


Wyświetlanie 1-2 z 2
Tytuł:
Sorption of organic compounds by organo-zeolites
Autorzy:
Wołowiec, M.
Muir, B.
Bajda, T.
Powiązania:
https://bibliotekanauki.pl/articles/184432.pdf
Data publikacji:
2016
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
water system
human health
wastewater
Opis:
Organic compounds such as BTEX and PAHs are one of the most common contaminants in water system. These contaminants would take decades to degrade and they have harmful effects on human health (Qin et al. 2008). Several treatment methods have been developed to remove those contaminants from industrial wastewater. They include ion-exchange, filtration, adsorption and the use of various types of sorbents for example zeolites (Kibazohi et al. 2004, Mathur et al. 2007, Aivaliotiet al. 2012, Almeida et al. 2012). Natural clinoptilolite (Cp) from the Bystré deposit in Slovakia and zeolite Na-X synthesized from fly ash has been modified with a hexadecyltrimethyl ammonium bromide (HDTMA) in amounts of 1.0 and 2.0 of external cation exchange capacity (ECEC) of the zeolites (Szala et al. 2013). The sorption properties of unmodified zeolites and organo-zeolites in terms of aqueous solutions of benzene, ethylobenzene, toluene, p-xylene (BTEX) and their mixtures as well as anthracene, naphthalene, benzo[a]pyrene, dibenzo[a,h]anthracene (PAHs) and their mixtures at different concentrations were evaluated. The results showed that the modification of the zeolite Na-X and Cp with HDTMA improves the sorption properties. Modification in the amount of 1.0 ECEC proved to be the best in terms of p-xylene, anthracene, naphthalene, benzo[a]pyrene, dibenzo[a,h]anthracene. On the other hand benzene, ethylobenzene and toluene were adsorbed the most effectively by 2.0 ECEC modification of Na-X and Cp. Based on experimental data, the removal efficiencies for BTEX follows the order: p-xylene > toluene > benzene > ethylobenzene, for POHs: dibenzo[a,h]anthracene > benzo[a] pyrene > anthracene > naphthalene. P-xylene and naphtalene were adsorbed in the greatest quantity and benzene and anthracene in the lowest quantity from the mixtures of BTEX and PAHs, respectively. The sorption efficiency depends on the physicochemical properties of the organic compounds (dipole moment, molar mass, molecule structure and the time of the sorption process) as well as natural Cp and synthetic zeolite Na-X properties, such as Si/Al ratio, texture parameters and external cation exchange capacity. With an increasing concentration of the hydrocarbons in the solution the sorption capacity increases (Szala et al. 2015). Natural Cp is a better sorbent than synthetic zeolite Na-X in case of BTEX sorption, while PAHs are adsorbed more effectively by zeolite Na-X and its modifications. The mechanism of the sorption consists on the dissolving of the organic compounds into the organic layer of the surfactant (on the zeolites’ surface) as well as on the organic compounds’ penetration into the mesopores.
Źródło:
Geology, Geophysics and Environment; 2016, 42, 1; 139-140
2299-8004
2353-0790
Pojawia się w:
Geology, Geophysics and Environment
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Molybdates and tungstates sorption on organo-smectites as a process controlled by the type and amount of surfactant
Autorzy:
Muir, B.
Andrunik, D.
Bajda, T.
Powiązania:
https://bibliotekanauki.pl/articles/184160.pdf
Data publikacji:
2016
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
formation
modification
cation
Opis:
Modification of a smectite with organic surfactants leads to the formation of an organo-mineral complex characterized by a positive charged (Baj da et al. 2015). The process involves the exchange of naturally occurring cations, e.g. Ca 2+, Mg 2+, Na +, K + by large organic cations of surfactants. This alteration makes it possible to use organo-smectites as sorbents to remove anionic forms of Mo(VI) and W(VI) from aqueous solutions. The concentration of molybdenum in the environment is significantly enhanced by anthropogenic inputs from coal-resource development, fly ash, sewage sludge and hard-rock mining activity (Kalembkiewicz & Sočo 2009). W(VI) is released to the environment through its use in winter tires or by its applications in industry e.g. enriches alloys or electrotechnics (Gustafsson 2003). The environmental behavior of molybdenum and tungsten becomes very complex once they dissolve as Mo(VI) and W(VI) anions occur as a monomer only in alkaline or neutral solutions. Bentonite from the Jelšovy Potok in Slovakia, rich in montmorillonite phase, was used in the sorption experiments (Bajda et al. 2015). Through the preparation of a series of experiments it was possible to define the impact of various surfactants, their amount and organo-smectites’ properties order on the sorption capacity and pH effect. Smectite has been modified with dodecyltrimethylammonium bromide (DDTMA), didodecyldimethylammonium bromide (DDDDMA), hexadecyltrimethylammonium bromide (HDTMA) and dihexadecyldimethylammonium bromide (DHDDMA) in amounts of: 0.5, 1.0 and 2.0 of cation exchange capacity (CEC). Experiments of Mo(VI) and W(VI) sorption on organo-smectites were conducted under various concentrations of Mo(VI) and W(VI) (0–20 mM) and in wide range of pH’s (1–13). The effectiveness of modifications follows the order DDTMA-smectite > HDTMA-smectite > DDDDMA-smectite > DHDDMA-smectite. The unmodified smectite did not remove Mo(VI) and W(VI) anions from the aqueous solution at all. In the removal of Mo(VI), sorption efficiency follows the order: DDTMA-smectite > DDDDMA-smectite > HDTMA-smectite > DHDDMA-smectite. In case of W(VI) the efficiency of the removal can be place: DDDDMA-smectite > DDTMA- -smectite > HDTMA-smectite > DHDDMA- -smectite. With an increasing concentration of Mo(VI) or W(VI) in the solutions, the sorption increases. The maximum sorption capacity in the removal of Mo(VI) was 1710 mmol Mo(VI)/kg in case of smectite modified with DDTMA at 0.5 CEC. The best result of tungsten sorption was 5882 mmol W(VI)/kg and it was obtained for DDDDMA-smectite (0.5 CEC). Results showed that the sorption is more effective at a lower pH, in both Mo(VI) and W(VI) removal. The smectite modified with surfactant with double carbon chain (DDDDMA, DHDDMA) proved to be a better sorbent. With an increasing amount of surfactant attached to the smectite, the sorption efficiency increases.
Źródło:
Geology, Geophysics and Environment; 2016, 42, 1; 102-103
2299-8004
2353-0790
Pojawia się w:
Geology, Geophysics and Environment
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies