Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Mozafari, Babak" wg kryterium: Autor


Wyświetlanie 1-3 z 3
Tytuł:
A decentralized control strategy to bring back frequency and share reactive power in isolated microgrids with virtual power plant
Autorzy:
Khanjanzadeh, Amir
Soleymani, Soodabeh
Mozafari, Babak
Powiązania:
https://bibliotekanauki.pl/articles/2173517.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
PFDC
power-frequency droop control
VPP
virtual power plant
microgrid
virtual impedance
decentralized control
kontrola spadku częstotliwości zasilania
elektrownia wirtualna
mikrosieci
wirtualna impedancja
zdecentralizowana kontrola
Opis:
In this paper, a novel Power-Frequency Droop Control (PFDC) is introduced to perfectly bring back the system frequency and share the reactive power in isolated microgrid with virtual power plant (VPP). The frequency-based power delivery must be essentially implemented in VPP which can operate as a conventional synchronous generator. It has been attained by enhancing the power processing unit of each VPP to operate as an active generator. The inverter coupling impedance which has been assigned by the virtual impedance technique has reduced the affected power coupling resulting from line resistance. The reference has been subsequently adjusted to compensate the frequency deviation caused by load variation and retrieve the VPP frequency to its nominal value. In addition, the line voltage drop has compensated the voltage drop and load sharing error to obliterate the reactive power sharing imprecision resulting from the voltage deviation. The voltage feedback confirms the correct voltage after compensating the voltage drop. As an illustration, conventional PFDC after a load change cannot restore the system frequency which is deviated from 50 Hz and rested in 49.9 Hz while, proposed PFDC strategy fades away the frequency deviation via compensating the variation of the frequency reference. Likewise, the frequency restoration factor ( γ) has an effective role in retrieving the system frequency, i.e., the restoration rate of the system frequency is in proportion with γ. As a whole, the simulation results have pointed to the high performance of proposed strategy in an isolated microgrid.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2021, 69, 1; art. no. e136190, 1--9
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A decentralized control strategy to bring back frequency and share reactive power in isolated microgrids with virtual power plant
Autorzy:
Khanjanzadeh, Amir
Soleymani, Soodabeh
Mozafari, Babak
Powiązania:
https://bibliotekanauki.pl/articles/2090692.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
PFDC
power-frequency droop control
VPP
virtual power plant
microgrid
virtual impedance
decentralized control
kontrola spadku częstotliwości zasilania
wirtualna elektrownia
mikrosieci
wirtualna impedancja
zdecentralizowana kontrola
Opis:
In this paper, a novel Power-Frequency Droop Control (PFDC) is introduced to perfectly bring back the system frequency and share the reactive power in isolated microgrid with virtual power plant (VPP). The frequency-based power delivery must be essentially implemented in VPP which can operate as a conventional synchronous generator. It has been attained by enhancing the power processing unit of each VPP to operate as an active generator. The inverter coupling impedance which has been assigned by the virtual impedance technique has reduced the affected power coupling resulting from line resistance. The reference has been subsequently adjusted to compensate the frequency deviation caused by load variation and retrieve the VPP frequency to its nominal value. In addition, the line voltage drop has compensated the voltage drop and load sharing error to obliterate the reactive power sharing imprecision resulting from the voltage deviation. The voltage feedback confirms the correct voltage after compensating the voltage drop. As an illustration, conventional PFDC after a load change cannot restore the system frequency which is deviated from 50 Hz and rested in 49.9 Hz while, proposed PFDC strategy fades away the frequency deviation via compensating the variation of the frequency reference. Likewise, the frequency restoration factor ( γ) has an effective role in retrieving the system frequency, i.e., the restoration rate of the system frequency is in proportion with γ. As a whole, the simulation results have pointed to the high performance of proposed strategy in an isolated microgrid.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2021, 69, 1; e136190, 1--9
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Predictive torque control of induction motor drive with reduction of torque and flux ripple
Autorzy:
Kiani, Babak
Mozafari, Babak
Soleymani, Soodabeh
Mohammadnezhad Shourkaei, Hosein
Powiązania:
https://bibliotekanauki.pl/articles/2086858.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
FS-MPTC
induction motor
duty ratio
voltage vector
torque
flux ripples
silnik indukcyjny
cło
wektor napięcia
moment obrotowy
fala strumienia
tętnienie momentu obrotowego
Opis:
The continuing efforts for reduction of the torque and flux ripples using Finite Set Model Predictive Direct Torque Control methods (FS-MPDTC) have been currently drowning a great attention from the academic communities and industrial applications in the field of electrical drives. The major problem of high torque and flux ripples refers to the consideration of just one active voltage vector at the whole control period. Implementation of two or more voltage vectors at each sampling time has recently been adopted as one of the practical techniques to reduce both the torque and flux ripples. Apart from the calculating challenge of the effort control, the parameter dependency and complexity of the duty ratio relationships lead to reduction of the system robustness. those are two outstanding drawbacks of these methods. In this paper, a finite set of the voltage vectors with a finite set of duty cycles are employed to implement the FS-MPDTC of induction motor. Based on so-called Discrete Duty Cycle- based FS-MPDTC (DDC-FS-MPDTC), a base duty ratio is firstly determined based on the equivalent reference voltage. This duty ratio is certainly calculated using the command values of the control system, while the motor parameters are not used in this algorithm. Then, two sets of duty ratios with limit members are constructed for two adjacent active voltage vectors supposed to apply at each control period. Finally, the prediction and the cost function evaluation are performed for all of the preselected voltage vectors and duty ratios. However, the prediction and the optimization operations are performed for only 12 states of inverter. Meanwhile, time consuming calculations related to SVM has been eliminated. So, the robustness and complexity of the control system have been respectively decreased and increased, and both the flux and torque ripples are reduced in all speed ranges. The simulation results have verified the damping performance of the proposed method to reduce the ripples of both the torque and flux, and accordingly the experimental results have strongly validated the aforementioned statement.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2021, 69, 4; e137727, 1--13
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies