Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Moskovchuk, Olha" wg kryterium: Autor


Wyświetlanie 1-1 z 1
Tytuł:
Analysis of upper respiratory tract segmentation features to determine nasal conductance
Analiza cech segmentacji górnych dróg oddechowych w celu określenia przewodnictwa nosowego
Autorzy:
Avrunin, Oleg
Nosova, Yana
Shushliapina, Nataliia
Abdelhamid, Ibrahim Younouss
Avrunin, Oleksandr
Kyrylashchuk, Svetlana
Moskovchuk, Olha
Mamyrbayev, Orken
Powiązania:
https://bibliotekanauki.pl/articles/2174750.pdf
Data publikacji:
2022
Wydawca:
Politechnika Lubelska. Wydawnictwo Politechniki Lubelskiej
Tematy:
aerodynamics of nasal breathing
nasal cavity
tomographic reconstruction
segmentation
upper respiratory tract
air conduction
aerodynamika oddychania przez nos
jama nosowa
rekonstrukcja tomograficzna
segmentacja
górne drogi oddechowe
przewodzenie powietrza
Opis:
The paper examines the features of segmentation of the upper respiratory tract to determine nasal air conduction. 2D and 3D illustrations of the segmentation process and the obtained results are given. When forming an analytical model of the aerodynamics of the nasal cavity, the main indicator that characterizes the configuration of the nasal canal is the equivalent diameter, which is determined at each intersection of the nasal cavity. It is calculated based on the area and perimeter of the corresponding section of the nasal canal. When segmenting the nasal cavity, it is first necessary to eliminate air structures that do not affect the aerodynamics of the upper respiratory tract - these are, first of all, intact spaces of the paranasal sinuses, in which diffuse air exchange prevails. In the automatic mode, this is possible by performing the elimination of unconnected isolated areas and finding the difference coefficients of the areas connected by confluences with the nasal canal in the next step. High coefficients of difference of sections between intersections will indicate the presence of separated areas and contribute to their elimination. The complex configuration and high individual variability of the structures of the nasal cavity does not allow segmentation to be fully automated, but this approach contributes to the absence of interactive correction in 80% of tomographic datasets. The proposed method, which takes into account the intensity of the image elements close to the contour ones, allows to reduce the averaging error from tomographic reconstruction up to 2 times due to artificial sub-resolution. The perspective of the work is the development of methods for fully automatic segmentation of the structures of the nasal cavity, taking into account the individual anatomical variability of the upper respiratory tract.
W pracy przeanalizowano cechy segmentacji górnych dróg oddechowych w celu określenia powietrznego przewodnictwa nosowego. Przedstawiono zdjęcia 2D i 3D procesu segmentacji oraz uzyskanych wyników. Podczas formowania analitycznego modelu aerodynamiki jamy nosowej głównym wskaźnikiem charakteryzującym konfigurację kanału nosowego jest ekwiwalentna średnica, którą wyznacza się na każdym skrzyżowaniu jam nosowych. Jest ona obliczana na podstawie pola powierzchni i obwodu odpowiedniego odcinka kanału nosowego. Podczas segmentacji jamy nosowej w pierwszej kolejności należy wyeliminować struktury powietrzne, które nie wpływają na aerodynamikę górnych dróg oddechowych – są to przede wszystkim nienaruszone przestrzenie zatok przynosowych, w których dominuje rozproszona wymiana powietrza. W trybie automatycznym jest to możliwe dzięki eliminacji niepołączonych izolowanych obszarów i znalezieniu, w kolejnym kroku, współczynników różnicy obszarów połączonych konfluencjami z przewodem nosowym. Wysokie współczynniki różnic przekrojów pomiędzy skrzyżowaniami będą wskazywały na obecność wydzielonych obszarów i przyczynią się do ich eliminacji. Złożona konfiguracja i duża zmienność osobnicza struktur jamy nosowej nie pozwala na pełną automatyzację segmentacji, jednak takie podejście przyczynia się do braku konieczności interaktywnej korekcji w 80% zestawów danych tomograficznych. Zaproponowana metoda, uwzględniająca intensywność elementów obrazu znajdujących się blisko konturu, pozwala na nawet 2-krotne zmniejszenie błędu uśredniania z rekonstrukcji tomograficznej, wynikającego ze sztucznej subrozdzielczości. Perspektywą pracy jest opracowanie metod w pełni automatycznej segmentacji struktur jamy nosowej z uwzględnieniem indywidualnej zmienności anatomicznej górnych dróg oddechowych.
Źródło:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska; 2022, 12, 4; 35--40
2083-0157
2391-6761
Pojawia się w:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies