Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Moniri Morad, A." wg kryterium: Autor


Wyświetlanie 1-1 z 1
Tytuł:
Condition monitoring of off-highway truck tires at Sungun copper mine using neural networks
Monitorowanie stanu technicznego opon w ciężkich pojazdach terenowych eksploatowanych w kopalni miedzi Sungun, przy użyciu sieci neuronowych
Autorzy:
Moniri Morad, A.
Sattarvand, J.
Powiązania:
https://bibliotekanauki.pl/articles/218962.pdf
Data publikacji:
2013
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
eksploatacja
optymalizacja kosztów
opona ciężarówki
sztuczne sieci neuronowe
maintenance
cost optimization
truck tire
artificial neural networks
Opis:
Maintenance cost of the equipment is one of the most important portions of the operating expenditures in mines; therefore, any change in the equipment productivity can lead to major changes in the unit cost of the production. This clearly shows the importance and necessity of using novel maintenance methods instead of traditional approaches, in order to reach the minimum sudden occurrence of the equipment failure. For instance, the tires are costly components in maintenance which should be regularly inspected and replaced among different axles. The paper investigates the current condition of equipment tires at Sungun Copper Mine and uses neural networks to estimate the wear of the tires. The Input parameters of the network composed of initial tread depth, time of inspection and consumed tread depth by the time of inspection. The output of the network is considered as the residual service time ratio of the tires. The network trained by the feed-forward back propagation learning algorithm. Results revealed a good coincidence between the real and estimated values as 96.6% of correlation coefficient. Hence, better decisions could be made about the tires to reduce the sudden failures and equipment breakdowns.
Koszty użytkowania sprzętu stanowią jedną z najpoważniejszych pozycji w zestawieniu kosztów eksploatacyjnych kopalni, dlatego też każda poprawa wydajności sprzętu powoduje w efekcie zmianę jednostkowego kosztu produkcji. Wyraźnie pokazuje to wagę i konieczność stosowania nowoczesnych metod eksploatacji w miejsce podejścia tradycyjnego w celu minimalizacji ryzyka wystąpienia awarii sprzętu. Przykładowo, opony są elementami kosztownymi w eksploatacji, wymagają regularnego przeglądu i ponownego mocowania na osi. W artykule przebadano stan techniczny opon w maszynach i urządzeniach eksploatowanych w kopalni miedzi Sungun. Przy zastosowaniu metod wykorzystujących sieci neuronowe określano zużycie opon. Parametry wejściowe sieci to początkowa głębokość bieżnika, okres pomiędzy przeglądami, zużycie bieżnika do czasu przeglądu. Parametr wyjściowy to współczynnik określającyczas serwisowania opon. Sieć uczono przy użyciu algorytmu propagacji wstecznej z wyprzedzeniem (feedforward back-propagation algorithm). Uzyskane wyniki wskazują wysoką zbieżność pomiędzy wartościami rzeczywistymi a estymowanymi, współczynnik korelacji kształtuje się na poziomie 96.6%. Umożliwia to podejmowanie lepszych decyzji w odniesieniu do eksploatacji opon, tak by zapobiec nagłym uszkodzeniom i awariom sprzętu.
Źródło:
Archives of Mining Sciences; 2013, 58, 4; 1133-1144
0860-7001
Pojawia się w:
Archives of Mining Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies