Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Mishra, Ritesh Kumar" wg kryterium: Autor


Wyświetlanie 1-2 z 2
Tytuł:
Analysis of Selective-Decode and Forward Relaying Protocol over κ-µ Fading Channel Distribution
Autorzy:
Shankar, Ravi
Bhardwaj, Lokesh
Mishra, Ritesh Kumar
Powiązania:
https://bibliotekanauki.pl/articles/309566.pdf
Data publikacji:
2020
Wydawca:
Instytut Łączności - Państwowy Instytut Badawczy
Tematy:
channel fading
channel state information
relaying protocol
selective decode and forward
symbol error rate
Opis:
In this work, the performance of selective-decode and forward (S-DF) relay systems over κ-µ fading channel conditions is examined in terms of probability density function (PDF), system model and cumulative distribution function (CDF) of the κ-µ distributed envelope, signal-to-noise ratio and the techniques used to generate samples that rely on κ-µ distribution. Specifically, we consider a case where the sourceto-relay, relay-to-destination and source-to-destination link is subject to independent and identically distributed κ-µ fading. From the simulation results, the enhancement in the symbol error rate (SER) with a stronger line of sight (LOS) component is observed. This shows that S-DF relaying systems may perform well even in non-fading or LOS conditions. Monte Carlo simulations are conducted for various fading parameter values and the outcomes turn out to be a close match for theoretical results, which validates the derivations made.
Źródło:
Journal of Telecommunications and Information Technology; 2020, 1; 21-30
1509-4553
1899-8852
Pojawia się w:
Journal of Telecommunications and Information Technology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Investigation of Vehicular S-LSTM NOMA Over Time Selective Nakagami-m Fading with Imperfect CSI
Autorzy:
Shankar, Ravi
Chaudhary, Bhanu Pratap
Mishra, Ritesh Kumar
Powiązania:
https://bibliotekanauki.pl/articles/2174454.pdf
Data publikacji:
2022
Wydawca:
Instytut Łączności - Państwowy Instytut Badawczy
Tematy:
inter-symbol interference
MIMO
NOMA
orthogonal frequency division multiplexing
OFDM
S-LSTM
zero-mean circularly symmetric complex Gaussian
ZM-CSCG
Opis:
In this paper, the performance of a deep learningbased multiple-input multiple-output (MIMO) non-orthogonal multiple access (NOMA) system is investigated for 5G radio communication networks. We consider independent and identically distributed (i.i.d.) Nakagami-m fading links to prove that when using MIMO with the NOMA system, the outage probability (OP) and end-to-end symbol error rate (SER) improve, even in the presence of imperfect channel state information (CSI) and successive interference cancellation (SIC) errors. Furthermore, the stacked long short-term memory (S-LSTM) algorithm is employed to improve the system’s performance, even under time-selective channel conditions and in the presence of terminal’s mobility. For vehicular NOMA networks, OP, SER, and ergodic sum rate have been formulated. Simulations show that an S-LSTM-based DL-NOMA receiver outperforms least square (LS) and minimum mean square error (MMSE) receivers. Furthermore, it has been discovered that the performance of the end-to-end system degrades with the growing amount of node mobility, or if CSI knowledge remains poor. Simulated curves are in close agreement with the analytical results.
Źródło:
Journal of Telecommunications and Information Technology; 2022, 4; 47--59
1509-4553
1899-8852
Pojawia się w:
Journal of Telecommunications and Information Technology
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies