Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Miladinović, M." wg kryterium: Autor


Wyświetlanie 1-3 z 3
Tytuł:
Application of the partitioning method to specific Toeplitz matrices
Autorzy:
Stanimirović, P.
Miladinović, M.
Stojanović, I.
Miljković, S.
Powiązania:
https://bibliotekanauki.pl/articles/330588.pdf
Data publikacji:
2013
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
Moore-Penrose inverse
partitioning method
Toeplitz matrices
MATLAB
image restoration
odwrotność Moore-Penrose
metoda partycjonowania
macierze Teoplitza
odtworzenie obrazu
Opis:
We propose an adaptation of the partitioning method for determination of the Moore–Penrose inverse of a matrix augmented by a block-column matrix. A simplified implementation of the partitioning method on specific Toeplitz matrices is obtained. The idea for observing this type of Toeplitz matrices lies in the fact that they appear in the linear motion blur models in which blurring matrices (representing the convolution kernels) are known in advance. The advantage of the introduced method is a significant reduction in the computational time required to calculate the Moore–Penrose inverse of specific Toeplitz matrices of an arbitrary size. The method is implemented in MATLAB, and illustrative examples are presented.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2013, 23, 4; 809-821
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Calculating Ionization Transition Rate for Circularly Polarized Fields, Including Non-Zero Initial Momentum
Autorzy:
Ristić, V.
Miladinović, T.
Radulović, M.
Powiązania:
https://bibliotekanauki.pl/articles/1791204.pdf
Data publikacji:
2009-10
Wydawca:
Polska Akademia Nauk. Instytut Fizyki PAN
Tematy:
32.80.-t
32.80.Fb
32.80.Rm
Opis:
Potassium atoms in circularly polarized laser field whose intensity (I) varies from 2× $10^{12}$ W/$cm^2$ to 2.5× $10^{14}$ W/$cm^2$ were studied. In the case when there is zero initial momentum, transition rate (that depends only on I) exhibits standard behaviour: as I increases, so thus the rate, until it reaches its maximum value at 1.1× $10^{14}$ W/$cm^2$; after that, rate diminishes as I increases. In the case of non-zero initial momentum, transition rate (that now depends on I but additionally on initial momentum, too) exhibits following behaviour: dependence of the rate on I follows standard pattern, it rises with increase of I until it reaches its maximum, and then diminishes. But with increase of momentum, ionization rate gradually diminishes.
Źródło:
Acta Physica Polonica A; 2009, 116, 4; 504-506
0587-4246
1898-794X
Pojawia się w:
Acta Physica Polonica A
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Transition Rate Dependence on the Non-Zero Initial Momentum in the ADK-Theory
Autorzy:
Ristić, V. M.
Miladinović, T. T.
Radulović, M. M.
Powiązania:
https://bibliotekanauki.pl/articles/2047850.pdf
Data publikacji:
2007-11
Wydawca:
Polska Akademia Nauk. Instytut Fizyki PAN
Tematy:
32.80.-t
32.80.Fb
32.80.Rm
Opis:
Tunneling regime, introduced by Keldysh, in the interaction of strong lasers with atoms has been now accepted as the reliable method for describing processes when low frequency lasers are involved. Yet it was always assumed that the ionized electrons are leaving the atom with zero initial momentum. Because we are interested in how non-zero momentum influences the transition probability of tunnel ionization, we obtained the exact expression for the momentum. Here the estimation of the transition probability with nonzero momentum included was conducted. Potassium atoms in the laser field whose intensity varied from 10$\text{}^{13}$ W/cm$\text{}^{2}$ to 10$\text{}^{14}$ W/cm$\text{}^{2}$ were studied. It seems that all energy of laser field is used for tunneling ionization process at the beginning of laser pulse - ionization probability is large. After that, with further action of laser pulse, ionization probability decreases, probably because part of laser pulse energy is used for increasing momentum of ejected electrons, leaving smaller amounts of light quanta available for ionization of remaining electrons. If laser pulse lasts long enough, then the amounts of light quanta available for ionization become larger, resulting in increase in ionization probability, now with greater starting energy of ejected electrons.
Źródło:
Acta Physica Polonica A; 2007, 112, 5; 909-914
0587-4246
1898-794X
Pojawia się w:
Acta Physica Polonica A
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies