Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Mihók, P." wg kryterium: Autor


Wyświetlanie 1-2 z 2
Tytuł:
Reducible properties of graphs
Autorzy:
Mihók, P.
Semanišin, G.
Powiązania:
https://bibliotekanauki.pl/articles/972021.pdf
Data publikacji:
1995
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
hereditary property of graphs
additivity
reducibility
Opis:
Let L be the set of all hereditary and additive properties of graphs. For P₁, P₂ ∈ L, the reducible property R = P₁∘P₂ is defined as follows: G ∈ R if and only if there is a partition V(G) = V₁∪ V₂ of the vertex set of G such that $⟨V₁⟩_G ∈ P₁$ and $⟨V₂⟩_G ∈ P₂$. The aim of this paper is to investigate the structure of the reducible properties of graphs with emphasis on the uniqueness of the decomposition of a reducible property into irreducible ones.
Źródło:
Discussiones Mathematicae Graph Theory; 1995, 15, 1; 11-18
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On the factorization of reducible properties of graphs into irreducible factors
Autorzy:
Mihók, P.
Vasky, R.
Powiązania:
https://bibliotekanauki.pl/articles/972030.pdf
Data publikacji:
1995
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
hereditary property of graphs
additivity
reducibility
vertex partition
Opis:
A hereditary property R of graphs is said to be reducible if there exist hereditary properties P₁,P₂ such that G ∈ R if and only if the set of vertices of G can be partitioned into V(G) = V₁∪V₂ so that ⟨V₁⟩ ∈ P₁ and ⟨V₂⟩ ∈ P₂. The problem of the factorization of reducible properties into irreducible factors is investigated.
Źródło:
Discussiones Mathematicae Graph Theory; 1995, 15, 2; 195-203
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies