Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Matuła, I." wg kryterium: Autor


Wyświetlanie 1-6 z 6
Tytuł:
Effect of high energy ball milling on the structure and phase decomposition of the multiferroic Bi₅Ti₃FeO₁₅ ceramics
Autorzy:
Dercz, J.
Zubko, M.
Dercz, G.
Matuła, I.
Powiązania:
https://bibliotekanauki.pl/articles/1075760.pdf
Data publikacji:
2016-10
Wydawca:
Polska Akademia Nauk. Instytut Fizyki PAN
Tematy:
75.85.+t
61.05.cp
68.37.Lp
81.20.Wk
Opis:
The paper presents the results of the Bi₅Ti₃FeO₁₅ multiferroic phase stability analysis during high-energy ball milling aimed at obtaining fine dispersion ceramic powder. The X-ray diffraction and transmission electron microscopy methods were used to analyse the structure and verify the degree of crystallite dispersion. Structural data analysis was carried out using the Rietveld method. To carry out the analysis of the morphology, the scanning electron microscopy was used. The results that were obtained showed that the high energy ball milling process results in the decomposition of the initial ceramics, where finally Bi₅Ti₃FeO₁₅ and Bi are obtained. An increase in the proportion of the amorphous phase and an increase in the dispersion of the grains and crystallites of the powder that occurs with an increase in the milling time were observed.
Źródło:
Acta Physica Polonica A; 2016, 130, 4; 852-855
0587-4246
1898-794X
Pojawia się w:
Acta Physica Polonica A
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Structure characterization of biomedical Ti-Mo-Sn alloy prepared by mechanical alloying method
Autorzy:
Dercz, G.
Matuła, I.
Zubko, M.
Liberska, A.
Powiązania:
https://bibliotekanauki.pl/articles/1152952.pdf
Data publikacji:
2016-10
Wydawca:
Polska Akademia Nauk. Instytut Fizyki PAN
Tematy:
81.05.Bx
87.85.J-
81.20.Ev
61.05.cp
68.37.Og
Opis:
The study presents the results of the influence of high energy milling on the structure of the new Ti-15Mo-5Sn [wt%] alloy for biomedical applications. During testing the powders were milled for the following milling times: 5, 15, 30, and 45 h. The milled powders were characterized by X-ray diffraction, scanning and transmission electron microscopy methods. Observation of the powder morphology after various stages of milling leads to the conclusion that with the increase of the milling time the size of the powder particles as well as the degree of aggregation change. However, a clear tendency of particles reduction at every stage of the mechanical alloying process is clearly observed. The X-ray diffraction results confirmed the presence of the α and β phases, and molybdenum. It has been found that the reflections from the Sn phase disappeared after five hours of milling, suggesting that the Sn and Ti alloying took place, leading to the creation of a titanium-based solid solution. After 30 and 45 h of mechanical alloying the formation of the β-Ti phase, the final share of which is 46(4) wt%, was observed. Furthermore, it was found that a diffraction line broadening with the increase of the milling time results from reduction of the crystallite size and an increase in the lattice distortion. The maximum level of the reduction of the crystallite size was obtained after 45 h of milling. The maximum degree of the unit cells reduction for all phases present in the powder that was being milled was also observed for this milling time.
Źródło:
Acta Physica Polonica A; 2016, 130, 4; 1029-1032
0587-4246
1898-794X
Pojawia się w:
Acta Physica Polonica A
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Microstructure Evolution of Ti/ZrO2 and Ti/Al2O3 Composites Prepared by Powder Metallurgy Method
Autorzy:
Dercz, G.
Matuła, I.
Gurdziel, W.
Kuczera, N.
Powiązania:
https://bibliotekanauki.pl/articles/353964.pdf
Data publikacji:
2019
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
composite
Ti-ZrO2
Ti-Al2O3
high energy ball milling
Rietveld analysis
Opis:
The current study were performed in order to assess the fabrication possibility of the metal-ceramic composites based on nanocrystalline substrates. The influence of the variable time of the high energy ball-milling (10, 30 and 50 h) on the structure, pores morphology and microhardness of Ti/ZrO2 and Ti/Al2O3 compositions was studied. The X-ray diffraction analysis confirmed the composite formation for all milling times and sintering in the case of Ti/ZrO2 system. Decomposition of substrates during milling process of Ti/Al2O3 system was also observed. Additionally, the changes of lattice parameter as a function of milling time were studied. The morphology of powders and the microstructure of the sintered samples were observed by scanning electron microscopy (SEM). Also, analysis of microhardness and pores structure were performed.
Źródło:
Archives of Metallurgy and Materials; 2019, 64, 2; 443-450
1733-3490
Pojawia się w:
Archives of Metallurgy and Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Influence of high energy milling time on the Ti-50Ta biomedical alloy structure
Autorzy:
Matuła, I.
Dercz, G.
Zubko, M.
Prusik, K.
Pająk, L.
Powiązania:
https://bibliotekanauki.pl/articles/1153599.pdf
Data publikacji:
2016-10
Wydawca:
Polska Akademia Nauk. Instytut Fizyki PAN
Tematy:
87.85.J-
81.05.Zx
81.07.Wx
81.20.Ev
Opis:
Nickel-free titanium alloys are a promising research direction in the field of biomedical materials. Current literature reports indicate that there is a possibility of using the Ti-Ta alloys in medicine since these alloys have had satisfactory results as far as biocompatibility, resistance to corrosion and mechanical properties are concerned, which is an important aspect while considering the use of this alloy for long-lasting bone implants. This article presents the results of a high-energy milling process with the use of Ti and Ta powders. The ball-milling process was carried out for various times, including 20, 40, 60, 80, and 100 h. The samples were characterized by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The research confirmed partial synthesis of the materials during the process of high energy ball milling.
Źródło:
Acta Physica Polonica A; 2016, 130, 4; 1033-1036
0587-4246
1898-794X
Pojawia się w:
Acta Physica Polonica A
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Phase Composition of Urban Soils by X-Ray Diffraction and Mössbauer Spectroscopy Analysis
Autorzy:
Kierlik, P.
Hanc-Kuczkowska, A.
Męczyński, R.
Matuła, I.
Dercz, G.
Powiązania:
https://bibliotekanauki.pl/articles/353120.pdf
Data publikacji:
2019
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
Mössbauer spectroscopy
X-ray diffraction
environmental protection
qualitative phase analysis
topsoil
Opis:
The main purpose of this study was to identify the mineral composition of soil sample taken from the upper layer of topsoil. High absorption of chemical substance is a characteristic for humus-organic layer of topsoil. The source of those substance could be a pollutant emitted to the atmosphere by human activity. The research area includes Upper Silesia region, which is the most industrial region of Poland. In the present study, the phase composition of the top soil separates were analyzed by using X-raydiffraction and Mössbauer spectroscopy. X-ray diffraction analysis revealed the presence of seven mineral phases in the material magnetic separated by lower current (quartz, illite, kaolinite, Fe3+ oxides, hematite, magnetite and pyrite). In case of higher current were identified four phases (quartz, muscovite, kaolinite and K0.94 Na0.06 (AlSi3 O8 )). Mössbauer spectroscopy was used for an extensive analysis of iron-containing phases (pyrrhotite, magnetite, aluminosilicate oxides with Fe3+ and kaolinite/Fe2+ silicate).
Źródło:
Archives of Metallurgy and Materials; 2019, 64, 3; 1029-1032
1733-3490
Pojawia się w:
Archives of Metallurgy and Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Microstructure and Properties of YSZ Coatings Prepared by Plasma Spray Physical Vapor Deposition for Biomedical Application
Autorzy:
Barczyk, J.
Dercz, G.
Matuła, I.
Góral, M.
Maszybrocka, J.
Bochenek, D.
Gurdziel, W.
Powiązania:
https://bibliotekanauki.pl/articles/356455.pdf
Data publikacji:
2019
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
PS-PVD method
bioactive coatings
cp-Ti
YSZ
osseointegration
Opis:
This paper presents the study of microstructure and properties of 8 mol% yttrium stabilized zirconia coating fabricated by Plasma Spray Physical Vapor Deposition technique on commercial pure titanium. The coating was characterized by X-ray diffraction, high resolution scanning electron microscope, profilometer, nanoindentation and nanomachining tests. The X-ray phase analysis exhibit the tetragonal Zr0.935 Y0.065O1.968, TiO and α-Ti phases. The Rietveld refinement technique were indicated the changes of crystal structure of the produced coatings. The characteristic structure of columns were observed in High Resolutions Scanning Electron Microscopy. Moreover, the obtained coating had various development of surfaces, thickness was equal to 3.1(1) μm and roughness 0.40(7) μm. Furthermore, the production coatings did not show microcracks, delamination and crumbing. The performed experiment encourages carried out us to tests for osseointegration.
Źródło:
Archives of Metallurgy and Materials; 2019, 64, 2; 779-783
1733-3490
Pojawia się w:
Archives of Metallurgy and Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-6 z 6

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies