Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Marsz, A." wg kryterium: Autor


Tytuł:
Causes and course of climate change and its hydrological consequences in the Greater Poland region in 1951-2020
Autorzy:
Marsz, Andrzej A.
Sobkowiak, Leszek
Styszyńska, Anna
Wrzesiński, Dariusz
Powiązania:
https://bibliotekanauki.pl/articles/15804430.pdf
Data publikacji:
2022
Wydawca:
Uniwersytet im. Adama Mickiewicza w Poznaniu
Tematy:
rapid climate shift
cause of warming up
thermohaline circulation
water balance
Polska
North Atlantic
Opis:
The paper presents effects of changes in climatic elements in the Greater Poland region (Poland), their causes and consequences for shaping the water balance of this area, copying with the most severe water deficit in Poland. The study period covers 70 years (1951–2020). The research identified an abrupt and significant change in the climate of Greater Poland, which started between 1987 and 1989, concerning not only air temperature but also a wider spectrum of climatic elements. The change in the state of the climate, which covers the entire Atlantic-Eurasian circulation sector, re-sults from a sudden change in the macro-circulation conditions in the middle troposphere (500 hPa). The reason for the change in the mid-tropospheric circulation is an equally abrupt and simultaneous change in the intensity of the ocean heat transport by the North Atlantic thermohaline circulation (NA THC). Climate change observed in Greater Poland is manifested in an increase in sunshine duration (SD) and air temperature, a decrease in relative humidity, a change in the cloud structure, and an increase in the degree of sky coverage. The main, physical reason for an increase in air tempera-ture is a rapid and strong increase in SD in the warm half-years, which began after 1988, and a significant increase in the frequency of positive North Atlantic Oscillation (NAO) phases in winters. The ongoing climate change entails various effects, among which the most important is considered to be hydrological consequences. The water balance of Greater Poland is becoming increasingly unfavourable, mainly as a result of a rapid increase in field evaporation.
Źródło:
Quaestiones Geographicae; 2022, 41, 3; 183-206
0137-477X
2081-6383
Pojawia się w:
Quaestiones Geographicae
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Kompensacja Bjerknesa
Bjerknes compensation
Autorzy:
Styszyńska, Anna
Marsz, Andrzej A.
Powiązania:
https://bibliotekanauki.pl/articles/2175593.pdf
Data publikacji:
2022
Wydawca:
Polskie Towarzystwa Geofizyczne
Tematy:
kompensacja Bjerknesa
cyrkulacja
temperatura powietrza
Bjerknes compensation
circulation indices
air temperature
Opis:
Praca przedstawia związek między transportem oceanicznym ciepła i transportem atmosferycznym ciepła z tropików do Arktyki, znany pod nazwą kompensacji Bjerknesa (1964). W artykule zwraca się uwagę na konsekwencje klimatyczne kompensacji Bjerknesa dla obszarów Europy. Przy wykorzystaniu danych obserwacyjnych przedstawia się słuszność tej hipotezy odnośnie ujemnych korelacji między oceanicznymi i atmosferycznymi strumieniami ciepła oraz dodatnich związków między anomaliami oceanicznego transportu ciepła i intensywnością wiatrów zachodnich w szerokościach umiarkowanych.
The work presents the relationship between ocean heat transport and atmospheric heat transport from the tropics to the Arctic, known as the Bjerknes compensation (1964). Attention is drawn to the climatic consequences of Bjerknes’ compensation for the areas of Europe. Using the observational data, the validity of this hypothesis is presented regarding the negative correlations between oceanic and atmospheric heat fluxes and positive relationships between ocean heat transport anomalies and the intensity of westerly winds in moderate latitudes.
Źródło:
Przegląd Geofizyczny; 2022, 3-4; 99--118
0033-2135
Pojawia się w:
Przegląd Geofizyczny
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Inercja rocznego odpływu całkowitego rzek Polski względem międzyrocznej zmienności przebiegu elementów klimatycznych
The inertia of the total runoff of Polish rivers in relation to the inter-annual variability of the course of climatic elements
Autorzy:
Marsz, Andrzej A.
Styszyńska, Anna
Powiązania:
https://bibliotekanauki.pl/articles/43348313.pdf
Data publikacji:
2021-12-15
Wydawca:
Poznańskie Towarzystwo Przyjaciół Nauk
Tematy:
Polska
river runof
climatic elements
inertia
Opis:
The work discusses the formation of the annual total runoff of Polish rivers as a function of changes in the annual values of climatic elements. The results of the analysis show that in the years 1966–2015, 40–50% of the runoff variance in a hydrological year was determined by the variability of climatic elements that occurred in the preceding year, and 20–30% in the same year. This indicates the occurrence of much stronger inertia in the variability of the runoff in relation to the variability of weather conditions. The main elements influencing the variability of the runoff are the annual rainfall and the annual air temperature in the preceding year, and in the same hydrological year – the variability of annual rainfall, sunshine duration and air temperature. The runoff from the area of Poland shows a strong relationship (R = 0.82) with the de Martonne climate aridity indices, the variability of which in the preceding and the current year together explains ~66% of its variance.
Źródło:
Badania Fizjograficzne Seria A - Geografia Fizyczna; 2021, 12 (72); 159-179
2081-6014
Pojawia się w:
Badania Fizjograficzne Seria A - Geografia Fizyczna
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Role of internal variability of climate system in increase of air temperature in Wrocław (Poland) in the years 1951–2018
Autorzy:
Marsz, Andrzej A.
Styszyńska, Anna
Bryś, Krystyna
Bryś, Tadeusz
Powiązania:
https://bibliotekanauki.pl/articles/2054944.pdf
Data publikacji:
2021-09-01
Wydawca:
Uniwersytet im. Adama Mickiewicza w Poznaniu
Tematy:
air temperature trend
macro-circulation conditions
sunshine duration
NAO
radiative forcing
CO2
Opis:
In the course of analysing the annual air temperature in Wrocław (TWr), a rapid change of the thermal regime was found between 1987 and 1989. TWr increased by >1°C, a strong, statistically significant positive trend emerged. The analysis of processes showed that strong warming in the cold season of the year (December–March) occurred as a result of an increase in the NAO intensity and warming in the warm season because of increased sunshine duration in Wrocław (ShWr). Multiple regression analysis has shown that the winter NAO Hurrell’s index explains 15% of TWr variance, and the ShWr of the long-day (April–August) period 49%, whereas radiative forcing 5.9%. This indicates that the factors incidental to the internal variability of the climate system explain 64% of the TWr variability and the effect of increased CO2 concentration only ~6%. The reason for this rapid change of the thermal regime was a radical change in macro-circulation conditions in the Atlantic-European circular sector, which took place between 1988 and 1989. The heat, which is the cause of warming in Wrocław, comes from an increase in solar energy inflow (April–August) and also is transported to Europe from the North Atlantic surface by atmospheric circulation (NAO). These results indicate that the role of CO2 in shaping the contemporary temperature increase is overestimated, whereas the internal variability of the climate system is underestimated.
Źródło:
Quaestiones Geographicae; 2021, 40, 3; 109-124
0137-477X
2081-6383
Pojawia się w:
Quaestiones Geographicae
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wpływ znaku faz NAO w okresie zimowym na bilans wodny i możliwości wystąpienia suszy w ciepłej porze roku na obszarze Polski
The Influence of the Sign of NAO Phases during the Winter Period on the Water Balance and the Possibility of Drought Occurrence in the Warm Season in Poland
Autorzy:
Marsz, Andrzej A.
Styszyńska, Anna
Powiązania:
https://bibliotekanauki.pl/articles/2078988.pdf
Data publikacji:
2021
Wydawca:
Uniwersytet Marii Curie-Skłodowskiej. Wydawnictwo Uniwersytetu Marii Curie-Skłodowskiej
Tematy:
droughts
NAO
water balance
evaporation
Polska
susza letnia
bilans wodny
parowanie
Polska
Opis:
W pracy wykazano, że zmiana fazy NAO wywiera wpływ na kształtowanie się średnich obszarowych najważniejszych elementów klimatycznych w okresie zimy, za wyjątkiem sum opadów. Wzrost temperatury powietrza, prędkości wiatru i usłonecznienia, a zmniejszenie się zachmurzenia i wilgotności względnej w czasie wystąpienia dodatnich faz NAO prowadzi do wzrostu parowania terenowego. Parowanie w okresie zimowym obliczone metodą Iwanowa wykazuje silne i wysoce istotne, dodatnie skorelowanie z wartością zimowego indeksu NAO. Tym samym dochodzi do zmian bilansu wodnego, negatywnie wpływających na rozmiar retencji gruntowej. Zmiany indeksu NAO w okresie zimowym na tyle silnie wpływają na bilans wodny na obszarze Polski, że wykrywa się ich wpływ w przebiegu wartości rocznego odpływu całkowitego rzek polskich. Dodatkowo, po wystąpieniu dodatniej fazy NAO w okresie zimowym, w maju i sierpniu zmniejszają się sumy opadów (w tym w sierpniu wysoce istotnie) oraz zachmurzenie i wilgotność względna, a rośnie usłonecznienie. Stanowi to inercyjny efekt działania zimowego NAO o niezidentyfikowanej genezie. Łącznie wzrost parowania w okresie zimowym i opóźnione działanie zimowego NAO przyczyniają się do zwiększenia prawdopodobieństwa wystąpienia suszy w okresie lata, następującego po zimie, w czasie której znak indeksu NAO był dodatni.
The study shows that the change in the NAO phase has an impact on the formation of the area averages of the most important climatic elements during winter, with the exception of winter precipitation totals. An increase in air temperature, wind speed and sunshine duration, and a decrease in cloudiness and relative humidity during the occurrence of positive NAO phases lead to an increase in field evaporation. Evaporation in winter, calculated by Ivanov’s method, shows strong and highly significant positive correlation with the value of the winter NAO index. Thus, the water balance changes, negatively affecting the size of the soil retention. Changes in the NAO index in the winter period have such a strong influence on the water balance in Poland that their influence is detected in the course of the value of the total annual outflow of Polish rivers. Additionally, after the occurrence of a positive NAO phase in winter, in May and August the sums of precipitation (in August – highly significantly), cloudiness and relative humidity decrease, and sunshine duration increases. This is an inertial effect of the winter NAO of unidentified genesis. Both the increase in evaporation in winter and the delayed effect of winter NAO contribute to an increase in the probability of a drought in the summer following winter, during which the NAO sign was positive.
Źródło:
Annales Universitatis Mariae Curie-Sklodowska, sectio B – Geographia, Geologia, Mineralogia et Petrographia; 2021, 76; 127-143
0137-1983
Pojawia się w:
Annales Universitatis Mariae Curie-Sklodowska, sectio B – Geographia, Geologia, Mineralogia et Petrographia
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zima 2019-2020 roku : historyczne minimum zlodzenia Bałtyku
Winter 2019-2020 : the historical minimum of the ice cover of the Baltic Seas
Autorzy:
Marsz, Andrzej A.
Styszyńska, Anna
Powiązania:
https://bibliotekanauki.pl/articles/2175601.pdf
Data publikacji:
2021
Wydawca:
Polskie Towarzystwa Geofizyczne
Tematy:
Morze Bałtyckie
maksimum pokrywy lodowej
cyrkulacja atmosferyczna
klimat
temperatura powierzchni morza
Baltic Sea
maximum ice cover
atmospheric circulation
climate
sea surface temperature
Opis:
W sezonie zimowym 2019-2020 wystąpiło historyczne minimum rocznej maksymalnej powierzchni zlodzonej Bałtyku (MIE) w całym 301.letnim okresie obserwacji (1720-2020). MIE osiągnęła w tym sezonie lodowym wartość zaledwie 37 tys. km2, przy średniej (1720-2019) równej 213 tys. km2 i (odchyleniu standardowym) równym 112,9 tys. km2. W pracy rozpatruje się zespół procesów, które doprowadziły do osiągnięcia przez MIE ekstremalnie niskiej wartości. Analizę przeprowadzono dla okresu ostatnich 70 lat (1951-2020). Główną przyczyną wystąpienia w sezonie zimowym 2019-2020 tak niskiej MIE jest zmiana reżimu cyrkulacji środkowotroposferycznej w latach 1987-1989, polegająca na przejściu epoki cyrkulacyjnej E w epokę cyrkulacyjną W. W ostatniej epoce cyrkulacyjnej frekwencja makro-typu W według klasyfikacji Wangengejma-Girsa wzrosła znacznie powyżej wartości średnich (ryc. 3). Ponieważ zmienność frekwencji makrotypów cyrkulacji środkowotroposferycznej steruje zmiennością wartości elementów klimatycznych, w tym temperaturą powietrza, usłonecznieniem, prędkością wiatru (tab. 1), zmiana frekwencji makrotypów doprowadziła do zmiany bilansu cieplnego Bałtyku. Po roku 1988 wzrosła akumulacja ciepła słonecznego w wodach Bałtyku w okresie letnim i zmniejszyły się strumienie ciepła jawnego i ciepła parowania z powierzchni Bałtyku w okresach zimowych. W efekcie tych zmian temperatura powierzchni morza (SST) systematycznie wzrastała i SST na coraz większych powierzchniach morza nie osiągała w okresach zimowych temperatury krzepnięcia. W przebiegu SST pojawił się trend dodatni i tym samym wystąpił ujemny trend w przebiegu MIE. Spowodowało to zmianę reżimu lodowego Bałtyku, w ostatniej epoce cyrkulacyjnej silnie zmniejszyła się średnia wartość MIE i znacznie wzrosła częstość występowania łagodnych sezonów lodowych, w tym sezonów ekstremalnie łagodnych (MIE < 81.0 tys. km2). Wystąpienie w okresie ostatniej zimy (DJFM; 2019-2020) bardzo silnej cyrkulacji strefowej (ryc. 6), będącej skutkiem dominacji frekwencji makrotypu W (tab. 3) doprowadziło do wystąpienia bardzo silnych anomalii temperatury powietrza i anomalii SST (ryc. 7), uniemożliwiających, poza skrajnymi północnymi akwenami Bałtyku (Zatoka Botnicka), rozwój zlodzenia. Wystąpienie historycznego minimum MIE w sezonie lodowym 2019-2020 stanowi wynik ewolucji pola SST Bałtyku, zacho-zącej pod wpływem zmiany charakteru cyrkulacji atmosferycznej po roku 1988.
In the winter season 2019-2020, there was a historical minimum of the annual maximum ice extent (MIE) of the Baltic Sea within the entire 301-year observation period (1720-2020). In this ice season MIE reached a value of only 37,000 km2, with an average (1720-2019) of 213,000 km2 and (standard deviation) of 112,900 km2. The paper considers the set of pro-cesses that led to the MIE reaching an extremely low value. The analysis was carried out for the last 70 years (1951-2020). The main reason for the occurrence of such a low MIE in the winter season 2019-2020 is the change in the mid-tropospheric circulation regime in the years 1987-1989, consisting in the transition of the E circulation epoch into the W circulation epoch. In the last period of circula-tion epoch the frequency of the W macrotype according to the Wangengejm-Girs classifica-tion increased significantly above the mean values (Fig. 3). As the variability of the frequency of the macrotypes of the mid-tropospheric circulation controls the variability of the values of climatic elements, including air temperature, sunshine duration, wind speed (Table 1), the change in the frequency of macrotypes led to a change in the thermal balance of the Baltic Sea. After 1988 the accumulation of solar heat in the waters of the Baltic Sea in the Summer period increased, and the fluxes of sensible heat and the heat of evaporation from the surface of the Baltic Sea in Winter periods decreased. As a result of these changes the sea surface temperature (SST) was systematically increasing, and the SST on increasingly larger sea sur-faces did not reach the freezing point in Winter. There was a positive trend in the course of SST and thus a negative trend in the course of MIE. This caused a change in the ice regime of the Baltic Sea. In the last circulation epoch the mean value of MIE decreased significantly and the frequency of mild ice seasons increased significantly, including extremely mild seasons (MIE <81,000 km2). The occurrence of a very strong zonal circulation during the last winter (DJFM; 2019-2020) (Fig. 6), resulting from the dominance of the W macrotype frequency (Table 3), led to a very strong air temperature anomalies and to the SST anomalies (Fig. 7), preventing, apart from the extremely northern waters of the Baltic Sea (Gulf of Bothnia), the development of the ice cover. The occurrence of the historical MIE minimum in the 2019-2020 ice season is the result of the evolution of the Baltic SST field, which took place as a result of the change in the nature of the atmospheric circulation after 1988.
Źródło:
Przegląd Geofizyczny; 2021, 3-4; 227--249
0033-2135
Pojawia się w:
Przegląd Geofizyczny
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zmiany stanu termicznego Atlantyku Północnego a przebieg wybranych elementów klimatycznych charakteryzujących klimat Polski
Changes in the thermal state of the North Atlantic and a course of selected climatic elements characterizing the climate of Poland
Autorzy:
Marsz, Andrzej A.
Styszyńska, Anna
Powiązania:
https://bibliotekanauki.pl/articles/2175602.pdf
Data publikacji:
2021
Wydawca:
Polskie Towarzystwa Geofizyczne
Tematy:
Północny Atlantyk
temperatura powierzchni oceanu
SST
Polska
elementy klimatyczne
korelacje
North Atlantic
Sea Surface Temperature
Polska
climatic elements
correlation
Opis:
W pracy rozpatruje się związki między szeregami 7 elementów klimatycznych, obliczonych jako średnie obszarowe dla Polski, a rocznymi szeregami SST na Atlantyku Północnym, obliczonymi dla gridów między 30 a 70°N, w rozdzielczości przestrzennej 10°φ × 10°λ. Okres analizy obejmuje lata 1951-2018. Dane SST pochodzą ze zbioru NOAA NCDC ERSST v.3b, a dane do utworzenia rocznych obszarowych wartości elementów klimatycznych nad Polską stanowią przetworzone dane IMGW BIP (temperatura i wilgotność powietrza, zachmurzenie ogólne, sumy opadów i usłonecznienie) oraz dane pochodzące z reanalizy (SLP i prędkość wiatru). Wyniki analizy ujawniły, że między wszystkimi roz- patrywanymi elementami klimatycznymi a SST na N Atlantyku zachodzą istotne lub (w zdecydowanej przewadze) wysoce istotne korelacje. Rozkład przestrzenny korelacji SST z poszczególnymi elementami przedstawia wyraźne zróżnicowanie geograficzne (rys. 1-7). SST na N Atlantyku w rejonie 30-40°N i 60-40°W wykazuje silne i wysoce istotne korelacje z temperaturą powietrza, sumą usłonecznienia i wilgotnością względną nad Polską. Słabsze, ale przeważnie wysoce istotne korelacje SST z rocznym zachmurzeniem, sumami opadu, SLP i prędkością wiatru obserwuje się w rejonie 50-60°N, 60-20°W. Analiza w większej rozdzielczości przestrzennej przeprowadzona na dwóch obszarach (sekcja S i sekcja N, ryc. 8) wskazała, czego należało się spodziewać, że wartości współczynników korelacji między zmianami SST są wyższe od określonych w analizie o małej rozdzielczości przestrzennej. Oprócz korelacji między SST w poszczególnych punktach i elementami klimatycznymi nad Polską, zachodzą również korelacje między południkowymi gradientami SST między 40 a 60°N. Największą siłę korelacji osiągają te na długościach B (40°W) i C (30°W) - tab. 8. Zmienność SST wykazuje silne związki ze składową długookresową zmian elementów klimatycznych, słabsze ze zmiennością międzyroczną. Analiza relacji logicznych wskazuje, że zmiany SST stanowią przyczynę zmian elementów klimatycznych nad Polską. Zmiany rocznych wartości SST na poszczególnych akwenach objaśniają około 46% wariancji rocznej temperatury powietrza i usłonecznienia w Polsce, 27-30% wariancji wilgotności względnej i prędkości wiatru oraz 12-23% wariancji rocznej zachmurzenia ogólnego, sum opadów oraz SLP. Ponieważ zmienność każdego elementu klimatycznego jest funkcją zmian SST na Atlantyku Północnym, wynika z tego, że zmiany i zmienność klimatu Polski są w znacznej części sterowane przez zmiany stanu termicznego Atlantyku Północnego.
The study considers the relationships between the series of 7 climatic elements, averaged for the area of Poland, and the annual series of SST in the North Atlantic, calculated for grids between 30 and 70°N, at a spatial resolution of 10°φ × 10°λ. The period of analysis covers the years 1951-2018. The SST data comes from the NOAA NCDC ERSST v.3b data base. The data used for the creation of area-averaged annual values of climatic elements over Poland are obtained from IMWM NRI (Institute of Meteorology and Water Management – National Research Institute) – air temperature and humidity, cloud cover, precipitation sums and sunshine duration, and from reanalyzed data – SLP and wind speed. The results of the analysis showed that there are significant or (prevalent) highly significant correlations between all the considered climatic elements and the SST in the North Atlantic. The spatial distribution of the SST correlation with individual elements shows a clear geo graphic differentiation (Fig. 1-7). SST in the North Atlantic in the region of 30°N – 40°N and 60°N - 40°W produces strong and highly significant correlations with air temperature, sum of sunshine duration and relative humidity over Poland). Weaker, but predominantly highly significant correla tions of SST with annual cloudiness, sum of precipitation, SLP and wind speed are observed in the region of 50°N – 60°N, 60°W – 20°W. The analysis based on higher spatial resolution carried out in two areas (section S and section N, Fig. 8) indicated, what could be expected, that the values of the correlation coefficients between changes in SST are higher than those performed for lower spatial resolution. Next to the correlation between the SST defined for individual grids and the climatic ele ments over Poland, the correlations between the longitudinal SST gradients between 40°N and 60°N are also observed. The greatest values of these correlations are noticed for the B (40°W) and C (30°W) profiles – Table 8. SST variability shows strong relation with the long-term component of changes in climatic elements, weaker with inter-annual variability. The analysis of logical relations shows that SST is the cause of changes in climatic elements over Poland. Changes in the annual SST values in individual water bodies explain about 46% of the annual air temperature and sum of sunshine dura tion variance in Poland, 27-30% of the relative humidity and wind speed variance, and 12-23% of the annual variance of cloud cover, sum of precipitation and SLP. Since the variability of each climatic element is a function of SST changes in the North Atlantic, the changes and variability in Poland’s climate are largely driven by changes in the thermal state of the North Atlantic.
Źródło:
Przegląd Geofizyczny; 2021, 3-4; 161--186
0033-2135
Pojawia się w:
Przegląd Geofizyczny
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Współczesne zmiany klimatyczne i ich wpływ na funkcjonowanie systemów miejskich (na przykładzie miast strefy nadmorskiej Polski)
Contemporary Climate Changes and Their Impact on Functioning of Urban Systems (on the Example of Polish Coastal Zone)
Autorzy:
Styszyńska, Anna
Krośnicka, Karolina
Marsz, Andrzej A.
Powiązania:
https://bibliotekanauki.pl/articles/2021117.pdf
Data publikacji:
2018
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
climate change
Polish coast
urban systems
Źródło:
Studia komitetu przestrzennego zagospodarowania kraju PAN; 2018, 187; 51-80
0079-3507
Pojawia się w:
Studia komitetu przestrzennego zagospodarowania kraju PAN
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
O związkach między intensywnością cyrkulacji termohalinowej na Atlantyku Północnym a sumami opadów w Hornsundzie (Spitsbergen)
The relationship between intensity of thermohaline circulation on the North Atlantic and precipitation totals at Hornsund (Spitsbergen)
Autorzy:
Marsz, A. A.
Powiązania:
https://bibliotekanauki.pl/articles/260812.pdf
Data publikacji:
2016
Wydawca:
Stowarzyszenie Klimatologów Polskich
Tematy:
Północny Atlantyk
THC (cyrkulacja termohalinowa)
sumy opadów
powierzchnia zlodzona
Spitsbergen
Hornsund
North Atlantic
THC (Thermohaline Circulation)
precipitation totals
sea-ice extent
Opis:
W pracy omówiono związki rocznych i kwartalnych sum opadów w Hornsundzie z intensywnością składowej powierzchniowej cyrkulacji termohalinowej (THC) na Atlantyku Północnym. Fazę i intensywność THC opisuje wskaźnik oznaczony jako DG3L. Analizy wykazują, że związki takie, silnie rozciągnięte w czasie, istnieją. Związki rocznych sum opadów oraz sum opadów w drugim półroczu (lipiec-grudzień) z THC są związkami pośrednimi. Wraz ze zwiększoną dostawą ciepła z transportem Wód Atlantyckich na północ, do Arktyki, rosną w wodach mórz Grenlandzkiego i Barentsa zasoby ciepła, w związku z czym wzrasta temperatura wody powierzchniowej (SST) i maleje pokrywa lodowa. Tym samym wzrasta powierzchnia wód wolnych od lodów, a powierzchnia morza ma wyższą temperaturę. Oba procesy prowadzą do wzrostu natężenia strumieni ciepła i pary wodnej z oceanu do atmosfery, co powoduje wzrost temperatury powietrza (SAT). Wzrost SAT prowadzi do podniesienia wysokości tropopauzy. W rezultacie ciągu procesów sterowanych przez zmienność THC powstają sprzyjające warunki do wzrostu sum opadów w okresie występowania zmniejszonej powierzchni lodów i silnej konwekcji w atmosferze (wzrost wodności i miąższości chmur). Te same procesy wyjaśniają wzrost udziału sum opadów ciekłych w sumie rocznej opadów w Hornsundzie oraz wystąpienie dodatniego trendu sum opadów. Opóźnienie (~6 lat) reakcji sum opadów względem zmian natężenia THC wynika z opóźnionego, w stosunku do przebiegu wskaźnika DG3L, przejścia cyrkulacji atmosferycznej nad Arktyką z reżimu cyrkulacji antycyklonalnej do reżimu cyrkulacji cyklonalnej. Zwiększenie frekwencji cyklonów nad Arktyką, poprzez wzrost częstości wypadania opadów frontalnych również sprzyja wzrostowi sum opadów. Bardziej rozszerzona analiza wskazuje, że zmienność THC reguluje, poprzez wzrost temperatury powietrza, sum opadów i zmianę struktury opadów (stałe/ ciekłe) również przebieg procesów ewolucji geosystemów lądowych.
The work discusses relationship between total annual and quarterly precipitation in Hornsund and intensity of surface component of thermohaline circulation (THC) on the North Atlantic. Phase and intensity of THC describes index marked as DG3L. Analysis shows that there are such dependencies, significantly extended in time. Relations between THC and total annual precipitation and sums of precipitation in second half of the year (July-December) are indirect dependencies. Together with increased heat supply with transport of Atlantic Water north to the Arctic, grow heat resources in waters of the Greenland and Barents seas. As a result, SST increases and decreases ice extent. Thereby increasing area of water free of ice cover and sea surface has a higher temperature. Both processes leads to an increase in intensity of heat flux and water vapor from ocean into atmosphere, causing an increase in air temperature (SAT). An increase in SAT leads to raise height of tropopause. As a result of a sequence of processes controlled by volatility of THC are generated favorable conditions for an increase of sum of precipitation during periods of reduced sea ice extent and strong convection into atmosphere (an increase in water content and thickness of clouds). These same processes explain an increase sum of liquid precipitation in annual precipitation structure in Hornsund and an occurrence of positive trend of sum of precipitation. Occurring delay (~ 6 years) reacting sum of precipitation in relation to course of indicator, that characterizes intensity variations of THC results from retarded, with respect to course of indicator DG3L, transition of atmospheric circulation over the Arctic from anticyclonic circulation regime to cyclonic circulation regime. Increased frequency of cyclones occurrence over the Arctic, through an increase in frequency of falling out frontal precipitation also favors growth of sum of precipitation. More extended analysis indicates that variability of THC regulates, by an increase in air temperature, total precipitation and change in precipitation structure (solid / liquid) and processes of evolution of land geosystems.
Źródło:
Problemy Klimatologii Polarnej; 2016, 26; 17-36
1234-0715
Pojawia się w:
Problemy Klimatologii Polarnej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zmiany zlodzenia Morza Karskiego w latach 1979-2015. Podejście systemowe
Changes of sea ice extent on the Kara Sea in the years 1979-2015. System approach
Autorzy:
Styszyńska, A.
Marsz, A. A.
Powiązania:
https://bibliotekanauki.pl/articles/260907.pdf
Data publikacji:
2016
Wydawca:
Stowarzyszenie Klimatologów Polskich
Tematy:
pokrywa lodowa
zmiany powierzchni lodów
THC
temperatura powietrza
temperatura wody powierzchniowej
Morze Karskie
Arktyka
Atlantyk Północny
ice cover
changes in sea-ice extent
air temperature
sea surface temperature
Kara Sea
Arctic
North Atlantic
Opis:
Praca omawia zmiany powierzchni lodów na Morzu Karskim i mechanizmy tych zmian. Scharakteryzowano przebieg zmian zlodzenia, ustalając momenty skokowego zmniejszenia się letniej powierzchni lodów. Rozpatrzono wpływ cyrkulacji atmosferycznej, zmian temperatury powietrza i zmian zasobów ciepła w wodach na zmiany zlodzonej tego morza. Analizy wykazały, że wszystkie zmienne opisujące zarówno stan zlodzenia jak i stan elementów klimatycznych są ze sobą wzajemnie powiązane przez różnego rodzaju sprzężenia zwrotne. W rezultacie tworzy się rekurentny system, w którym zmiany powierzchni lodów, wpływając na przebieg innych elementów systemu (temperaturę powietrza, temperaturę wody powierzchniowej) w znacznej części same sterują swoim rozwojem. Zmiennością całego tego systemu sterują zmiany intensywności cyrkulacji termohalinowej (THC) na Atlantyku Północnym, dostarczając do niego zmienne ilości energii (ciepła). Reakcja systemu zlodzenia Morza Karskiego na zmiany natężenia THC następuje z 6.letnim opóźnieniem.
The work discusses the changes in the ice extent on the Kara Sea in the years 1979-2015, i.e. in the period for which there are reliable satellite data. The analysis is based on the average monthly ice extent taken from the database AANII (RF, St. Peterburg). 95% of the variance of average annual ice extent explains the variability of the average of ice extent in ‘warm' season (July-October). Examination of features of auto-regressive course of changes in ice extent shows that the extent of the melting ice area between June and July (marked in the text RZ07-06) can reliably predict the ice extent on the Kara Sea in August, September, October and November as well as the average ice extent in a given year. Thus the changes in ice extent can be treated as a result of changes occurring within the system. Analysis of the relationship of changes in ice extent and variable RZ07-06 with the features of atmospheric circulation showed that only changes in atmospheric circulation in the Fram Strait (Dipole Fram Strait; variable DCF03-08) have a statistically significant impact on changes in ice extent on the Kara Sea and variable RZ07-06. The analysis shows no significant correlation with changes in ice extent or AO (Arctic Oscillation), or NAO (North Atlantic Oscillation). Variable RZ07-06 and variable DCF03-08 are strongly correlated and their changes follow the same pattern. Analysis of the relationship of changes in ice extent and variable RZ07-06 with changes in air temperature (the SAT) showed the presence of strong relationships. These correlations differ significantly depending on the region; they are much stronger with changes in air temperature in the north than in the south of the Kara Sea. Temperature of cold period (average temperature from November to April over the Kara Sea, marked 6ST11-04) has a significant effect on the thickness of the winter ice and in this way the thickness of ice in the next melting season becomes part of the "memory" (retention) of past temperature conditions. The thickness of the winter ice has an impact on the value of the variable RZ07-06 and on changes in ice extent during the next ‘warm’ season. As a result, 6ST11-04 explains 62% of the observed variance of the annual ice extent on the Kara Sea. SAT variability in the warm period over the Kara Sea (the average of the period July-October, marked 6ST07-10) explains 73% of the variance of annual ice extent. SAT variability of the N part of the Kara Sea (Ostrov Vize, Ostrov Golomjannyj), which explains 72-73% of the variance ice extent during this period, has particularly strong impact on changes in ice extent during warm period. These stations are located in the area where the transformed Atlantic Waters import heat to the Kara Sea. Analysis of the impact of changes in sea surface temperature (SST) variability on sea ice extent indicated that changes in SST are the strongest factor that has influence on ice extent. The variability of annual SST explains 82% of the variance of annual ice extent and 58% of the variance of the variable RZ07-06. Further analysis showed that the SAT period of warm and annual SAT on the Kara Sea are functions of the annual SST (water warmer than the air) but also ice extent. On the other hand, it turns out that the SST is in part a function of ice extent. All variables describing the ice extent and its changes as well as variables describing the nature of the elements of hydro-climatic conditions affecting the changes in ice extent (atmospheric circulation, SAT, SST) are strongly and highly significantly related (Table 9) and change in the same pattern. In this way, the existence of recursion system is detected where the changes in ice extent eventually have influence on ‘each other’ with some time shift. The occurrence of recursion in the system results in very strong autocorrelation in the course of inter-annual changes in ice extent. Despite the presence of recursion, factors most influencing change in ice extent, i.e. the variability in SST (83% of variance explanations) and variability in SAT were found by means of multiple regression analysis and analysis of variance. Their combined impact explains 89% of the variance of the annual ice extent on the Kara Sea and 85% of the variance of ice extent in the warm period. The same rhythm of changes suggests that the system is controlled by an external factor coming from outside the system. The analyses have shown that this factor is the variability in the intensity of the thermohaline circulation (referred to as THC) on the North Atlantic, characterized by a variable marked by DG3L acronym. Correlation between the THC signal and the ice extent and hydro-climatic variables are stretched over long periods of time (Table 10). The system responds to changes in the intensity of THC with a six-year delay, the source comes from the tropical North Atlantic. Variable amounts of heat (energy) supplied to the Arctic by ocean circulation change heat resources in the waters and in SST. This factor changes the ice extent and sizes of heat flux from the ocean to the atmosphere and the nature of the atmospheric circulation, as well as the value of the RZ07-06 variable, which determines the rate of ice melting during the ‘warm’ season. A six-year delay in response of the Kara Sea ice extent to the THC signal, compared to the known values of DG3L index to the year 2016, allows the approximate estimates of changes in ice extent of this sea by the year 2023. In the years 2017 to 2020 a further rapid decrease in ice extent will be observed during the ‘warm' period (July-October), in this period in the years 2020-2023 ice free conditions on the Kara Sea will prevail. Ice free navigation will continue from the last decade of June to the last decade of October in the years 2020-2023. Since the THC variability includes the longterm, 70-year component of periodicity, it allows to assume that by the year 2030 the conditions of navigation in the Kara Sea will be good, although winter ice cover will reappear.
Źródło:
Problemy Klimatologii Polarnej; 2016, 26; 109-156
1234-0715
Pojawia się w:
Problemy Klimatologii Polarnej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Badania polarne Akademii Morskiej w Gdyni
Polar research Gdynia Maritime University
Autorzy:
Marsz, A. A.
Styszyńska, A.
Powiązania:
https://bibliotekanauki.pl/articles/260800.pdf
Data publikacji:
2015
Wydawca:
Stowarzyszenie Klimatologów Polskich
Tematy:
historia badań polarnych
bibliografia polarna
meteorologia
klimatologia
oceanologia
lody morskie
Hornsund
Spitsbergen
Arktyka
Stacja Arctowskiego
Półwysep Antarktyczny
Antarktyka
history of polar research
polar bibliography
meteorology
climatology
oceanography
sea ice
Arctic
Arctowski Station
Antarctic Peninsula
Antarctica
Opis:
W pracy omówiono tematykę badań prowadzonych przez pracowników Wyższej Szkoły Morskiej/Akademii Morskiej w Gdyni w wysokich szerokościach półkul północnej i południowej. W latach 1975-2015 pracownicy tej uczelni opublikowali łącznie 231 artykułów, komunikatów i sprawozdań oraz 14 pozycji książkowych o charakterze monograficznym dotyczących różnych aspektów badań polarnych. Wśród tych prac 142 pozycje dotyczyły Arktyki i 103 pozycje – Antarktyki. Podstawowa problematyka badawcza obejmowała zagadnienia zmienności i zmian warunków hydroklimatycznych w Arktyce i Antarktyce, kształtowania się warunków lodowych i problemów żeglugi w lodach oraz zagadnień uprawiania żeglugi w rejonach słabo rozpoznanych pod względem nawigacyjnym, w tym badań dotyczących batymetrii dna i geomorfologii wybrzeży. Artykuł zawiera jako załącznik bibliografię prac polarnych pracowników Wyższej Szkoły Morskiej i Akademii Morskiej w Gdyni.
The paper discusses topics of research conducted by the staff of the Gdynia Maritime University in the high latitudes of northern and southern hemispheres. In the years 1975-2015 the employees of the university have published a total of 231 articles, communications and reports and 14 books of monographic covering various aspects of polar research. Among the 142 works related to the Arctic positions and 103 positions – Antarctica. The basic research problems included issues variability and change hydro-climatic conditions in the Arctic and Antarctic, the formation of ice conditions and navigation in ice problems and issues of navigation in areas poorly recognized in terms of navigation, including research on the bottom bathymetry and geomorphology coasts. The article includes as an annex a bibliography of works polar employees Gdynia Maritime University.
Źródło:
Problemy Klimatologii Polarnej; 2015, 25; 75-98
1234-0715
Pojawia się w:
Problemy Klimatologii Polarnej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Model zmian powierzchni lodów morskich Arktyki (1979-2013) – zmienne sterujące w modelu „minimalistycznym” i ich wymowa klimatyczna
Model of changes in the Arctic sea-ice extent (1979-2013) – variables steering the 'minimalist' model and their climatic significance
Autorzy:
Marsz, A. A.
Powiązania:
https://bibliotekanauki.pl/articles/260796.pdf
Data publikacji:
2015
Wydawca:
Stowarzyszenie Klimatologów Polskich
Tematy:
Arktyka
lody morskie
zmiany powierzchni lodów
czynniki sterujące
model
cyrkulacja termohalinowa
cyrkulacja atmosferyczna
Arctic
sea ice
ice extent changes
steering variables
thermohaline circulation
atmospheric circulation
Opis:
Praca omawia model zmian powierzchni zlodzonej Arktyki typu „białej skrzynki”, opierający się na dwu zmiennych niezależnych – wskaźniku oznaczonym jako DG3L, który charakteryzuje intensywność cyrkulacji termohalinowej (THC) na Atlantyku Północnym i wskaźniku D, który charakteryzuje cyrkulację atmosferyczną nad Arktyką. Objaśnienie konstrukcji obu wskaźników i wartości ich szeregów czasowych przedstawione jest w załącznikach Z1 i Z2. Okres opracowania obejmuje lata 1979-2013 i jest limitowany dostępnością danych o zmianach powierzchni lodów morskich w Arktyce. Model liniowy opierający się na tych zmiennych objaśnia ~72% wariancji rocznej powierzchni zlodzonej w Arktyce i powyżej 65% wariancji powierzchni zlodzonej w marcu (maksimum rozwoju powierzchni lodów) i wrześniu (minimum). Główną rolę w kształtowaniu tej zmienności odgrywa zmienność cyrkulacji termohalinowej, rola cyrkulacji atmosferycznej jest niewielka i wykazuje silną zmienność sezonową. Analiza tego modelu wykazała, że rzeczywiste zależności są nieliniowe, a zmiany pokrywy lodowej zachodzą w dwu odrębnych reżimach – „ciepłym” i „chłodnym”. Reżim „ciepły” funkcjonuje w sytuacji, gdy THC jest bardziej intensywna niż przeciętnie (wskaźnik DG3L > 0). Dochodzi wtedy do szybkiego spadku powierzchni lodów w okresie ciepłym – zwłaszcza we wrześniu i powolnego spadku rozmiarów pokrywy lodowej w marcu, cyrkulacja atmosferyczna w tym reżimie odgrywa istotną rolę w kształtowaniu zmian powierzchni lodów. Spadek natężenia THC poniżej przeciętnej (DG3L ≤ 0), z opóźnieniem około 6.letnim prowadzi, do przejścia do reżimu „chodnego”. W reżimie chłodnym następuje szybki przyrost powierzchni lodów w okresie ciepłym i bardzo powolny wzrost powierzchni lodów w marcu, rola cyrkulacji atmosferycznej w kształtowaniu zmienności pokrywy lodowej staje się nikła. Po dalszych kilku latach utrzymywania się reżimu „chłodnego” międzyroczne zmiany powierzchni zlodzonej stają się małe. Analizy związków między zmiennymi z przesunięciami czasowymi wykazały, że cyrkulacja atmosferyczna nad Arktyką stanowi funkcję THC. W rezultacie, za główną przyczynę zmian powierzchni zlodzonej Arktyki należy uznać rozciągnięte w czasie działanie zmian intensywności THC, które w rozpatrywanym okresie objaśnia ~90% wariancji rocznej powierzchni zlodzonej.
The paper presents the assumptions and structure of statistical model reproducing the changes in sea ice extent in the Arctic, using the minimum number of steering variables. The data set of NASA's Goddard Space Flight Center (GSFC) nsidc0192_seaice_trends_climo/total-area-ice-extent/nasateam/ (Total Ice-Covered Area and Extent) was used as starting data in the calibration of this model. Its subsets characterizing the sea ice extent of the Arctic Ocean (ArctOcn), Greenland Sea (Grnland), Barents and Kara seas (BarKara) were used. Their sums create a new variable known as the ‘Proper Arctic’. This model also used the following subsets: Archipelago Canadian (CanArch), Bay and Strait Hudson (Hudson), and Baffin Bay and Labrador Sea (Baffin), the sum of which creates another variable the ‘American Arctic’. The sum of all the above mentioned subsets creates a variable defined as the ‘entire Arctic’. The study covered the period 1979-2013, for which the said data set is made up of uniform and reliable data based on satellite observations. The model was developed for moments of maximum (March) and minimum (September) development of sea ice extent as well as for the annual average sea ice extent. After presenting the assumptions of the model (model type ‘White box’), formal analysis of the type and characteristics of the model, the choice of steering variables (independent; Chapters 3 and 4) was made. The index characterizing the intensity of thermohaline circulation (THC) in the North Atlantic, referred to as DG3L and an index characterizing atmospheric circulation having significant influence on changes in sea ice extent, marked as D, were used as independent variables in this model. Physical fundamentals and rules for calculating the DG3L index are discussed in detail in Annex 1, and the D index in Annex 2. These Annexes also include time series of both indexes (DG3L – 1880-2015; D – 1949-2015). Research into delays between the impact of variables and changes in sea ice extent indicated that sea ice extent showed maximum strength of the correlation with the DG3L variable with a three-year delay and with D variable with zero delay. The final form of the model is a simple equation of multiple regression (equation [1]). The following equations are used for estimating the regression parameters for individual sea areas in those time series: the Proper Arctic – equation [1a, 1b, 1c]; the American Arctic – equations [2a, 2b, 2c] and for the entire Arctic - equation [3a, 3b, 3c]. Statistical characteristics of each model are presented in Tables 3, 4 and 5, and Figures 2, 3 and 4 respectively and show the scattering of values estimated by means of each model in relation to the observed values. All models show high statistical significance. The best results, both in terms of explanation of the variance of the observed sea ice extent, as well as the size of the standard errors of estimation of sea ice extent are obtained for changes in the sea ice extent of the entire Arctic. The reasons for this may be traced back to the fact that errors in the estimation of partial models ([1a, 1b, 1c] and [2a, 2b, 2c]) have different signs, which in a synthetic model partially cancel out each other. Moreover, if the variable DG3L three years before shows strong and evenly distributed in time action, the D variable characterizing atmospheric circulation shows clearly seasonal activity – it is marked only during the minimum development of sea ice extent (September), when the degree of ice concentration is reduced, allowing its relatively free drift. The model for the annual average of sea ice extent of the entire Arctic (in the accepted limits) explains 71.5% of the variance, in September 68%, and in March 65% of the variance (Table 5). The lowest values are obtained for the American Arctic, where the D variable, characterizing atmospheric circulation does not appear to have significant influence, so the model is a linear equation with one variable (DG3L). Nevertheless, also in this case, the variance of the annual sea ice extent in the American Arctic is explained exceeding 50%. Variability of THC (described by the DG3L index) explains ~67% of the variance of annual sea ice extent and variability of atmospheric circulation (described by the D index) explains ~6% of the variance of annual sea ice extent of the entire Arctic. It allows claiming that THC and atmospheric circulation are the essential factors that influence the variability of sea ice extent of the Arctic. Both of these factors are natural factors. Further analysis of the results presented by various models and especially those affected by the DG3L variable (Fig. 5) delayed by three years suggests that the linear model is not the most appropriate model reflecting the changes in the sea ice extent of the entire Arctic and its parts. The action of DG3L variable, accumulated over several years, is saved and this causes that a strong significant correlation with the sea ice extent is prolonged. The analysis carried out by means of the segmented regression showed that the variability of sea ice extent was different where THC is lower than the average (DG3L ≤ 0), or different where THC is stronger than average (DG3L> 0; see equation [4a, 4b]). When the index is zero or less than zero, the impact of THC on the increase in sea ice extent is limited and the influence of changes in atmospheric circulation on sea ice extent is very small. Conversely, when the THC becomes intense and imports increased amounts of heat to the Arctic, the influence of DG3L index on the decrease in sea ice extent rises, like growing impact of atmospheric circulation on variation of sea ice extent (see equations [5a, 5b]. The segmented regression equations with these two variables explain 88.76% of the observed annual variation of sea ice extent of the entire Arctic (equations [5a, 5b]).This means that the sea ice extent of the Arctic is variable in two distinct regimes – ‘warm’, when the DG3L> 0 and ‘cold’, when the DG3L ≤ 0. This is similar to the results of Proshutinsky and Johnson (1997), Polyakov et al. (1999) and Polyakov and Johnson (2000) and their LFO oscillation. Time limits of the transition intensity of the THC phases from the positive to negative and vice versa correspond to similar limits of LFO, suggesting that the two different systems have the same cause. Polyakov and Johnson (2000) and Polyakov et al. (2002, 2003, 2004, 2005) can see the main reason for the change in the LFO regime in the transition of atmospheric circulation from anticyclonic regime to cyclonic regime and vice versa. The analysis of the reason for the transition of regime of changes in sea ice extent from ‘warm’ to ‘cold’ and vice versa – THC or atmospheric circulation – has shown that the D index is a function of previous changes in DG3L index. Atmospheric circulation over the Arctic shows a greater delay in response to changes in THC than the sea ice extent – this occurs with a 6-year delay (see Table 6, Equation 6). This allows replacing the D variable in the equations describing the change in sea ice extent, directly by DG3L variable from 6 years before (see Equation [7a, 7b]).These simultaneous equations explain about 90% of the observed annual variance of the sea ice extent of the entire Arctic in the years 1979-2013. Most importantly, however, it can be stated, with a high degree of certainty, that the variability of THC of the North Atlantic steers both the changes in sea ice extent and Basic features of atmospheric circulation over the Arctic. The effects of other factors than THC, having influence on variability of sea ice extent and the basic processes of the climate in the Arctic, in the short time scales, leave not too much space/place. The transition from ‘cold’ to ‘warm’ regime in the development of the sea ice extent in the Arctic requires an increase in the intensity of THC. If the values of DG3L index are greater than 0 for a period not shorter than three years, the decrease in the sea ice extent will start, initially in the period of its minimum development (August, September). If the resultant values of the DG3L index have positive values for further three years, the atmospheric circulation will transform into a cyclonic circulation (D index goes to positive values). The role of atmospheric circulation during the ‘warm’ season in the Arctic having influence on the change (reduction) of the sea ice extent becomes significant. The ‘warm’ regime will remain as long as long after its start the situation in which the algebraic sum of DG3L values is greater than 0. If such a situation lasts long, or in case of accumulation of high values of DG3L index, the sea ice cover can disappear almost completely in the warm period. The transition from the ‘warm’ regime to the ‘cold’ regime demands fulfillment of reverse conditions – a consistent decrease in the values of DG3L index into negative values for at least another three year period. After three years this will result in rapid increase in sea ice extent during warm period, thereby increasing the annual average of sea ice extent. If in subsequent years the value of DG3L index remains lower than zero, after the next 3-4 years, the atmospheric circulation will become the anticyclonic circulation. After that there will be gradual, slow growth in sea ice extent, decrease in air temperature, increase in ice thickness and change in the age of the ice structure towards the increase in the multi-year ice. The ice cover in the Arctic will become "self-sustaining", reducing interannual variability. Major changes will occur in the ‘warm’ season, minor in other seasons. The maximum sea ice extent of the Arctic in the cold season, with current conditions in the ‘cold’ regime, can reach ~13.5-14.5 million km2, the average annual sea ice extent should be ~12 (± 0.5) million km2. This area, especially in the winter season, may be in fact higher, since the weakening of the THC must also lead to a decrease in air temperature in the hemisphere.
Źródło:
Problemy Klimatologii Polarnej; 2015, 25; s. 249-334
1234-0715
Pojawia się w:
Problemy Klimatologii Polarnej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Ogólnopolskie seminaria meteorologii i klimatologii polarnej – wczoraj i dziś (1991-2015)
Polish polar meteorology and climatology seminars – yesterday and today (1991-2015)
Autorzy:
Marsz, A. A.
Powiązania:
https://bibliotekanauki.pl/articles/261071.pdf
Data publikacji:
2015
Wydawca:
Stowarzyszenie Klimatologów Polskich
Tematy:
meteorologia i klimatologia polarna
seminarium
Polska
polar meteorology and climatology
seminar
Polska
Opis:
W pracy opisano genezę i historię organizacyjną Ogólnopolskich Seminariów Meteorologii i Klimatologii Polarnej. Tematyka seminariów dotyczyła zmian warunków hydroklimatycznych w obszarach polarnych i zagadnień pokrewnych wskazujących i dokumentujących charakter i konsekwencje zmian klimatycznych zachodzących w Arktyce i Antarktyce. Odbyło się 25 seminariów, na których wygłoszono 419 referatów.
This paper describes the principles and history of the organization Polish Polar Meteorology and Climatology Seminars. The topics of seminars related to changes in the hydro-climatic conditions in the polar regions and related issues indicating and documenting the nature and consequences of climate change taking place in the Arctic and Antarctic. It held 25 seminars in which 419 presentation were delivered.
Źródło:
Problemy Klimatologii Polarnej; 2015, 25; 99-104
1234-0715
Pojawia się w:
Problemy Klimatologii Polarnej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zmiany powierzchni lodów morskich na morzach eurazjatyckiej Arktyki i ich potencjalny wpływ na nawigację na Północnej Drodze Morskiej w drugiej dekadzie XXI wieku
Changes of sea ice extent on the Euro-Asiatic Arctic seas linked to potential of navigation on the Northern Sea Route in the second decade of XXI century
Autorzy:
Marsz, A. A.
Pastusiak, T.
Styszyńska, A.
Powiązania:
https://bibliotekanauki.pl/articles/260682.pdf
Data publikacji:
2014
Wydawca:
Stowarzyszenie Klimatologów Polskich
Tematy:
lód morski
zmiany pokrywy lodowej
Północna Droga Morska
Arktyka Rosyjska
sea ice
changes of sea ice extent
Northern Sea Route
Russian Arctic
Opis:
W pracy przedstawiono wyniki szczegółowej analizy zachodzącej współcześnie (1979-2013) ewolucji pokrywy lodowej na morzach Arktyki Rosyjskiej, przez które prowadzą trasy Północnej Drogi Morskiej (PDM) oraz analizę długości sezonu żeglugowego (okresu, w którym koncentracja lodów nie przekracza 15%). Stwierdzono występujące w ostatnich latach (2002-2013) wyraźne polepszenie się potencjalnych warunków żeglugi, choć na morzach Łaptiewów i Wschodniosyberyjskim warunki te pozostają nadal bardzo trudne i labilne, nawet w okresie najmniejszego rozwoju pokrywy lodowej (druga połowa sierpnia – pierwsza połowa października). Przeprowadzona analiza długości okresu „bezlodowego”, w którym warunki lodowe dopuszczają względnie swobodną żeglugę statków nieposiadających najwyższych klas lodowych wykazuje, że w obecnych, wyjątkowo łagodnych warunkach lodowych, trasy na morzach Łaptiewów i Wschodniosyberyjskim nie gwarantują corocznej swobodnej żeglugi bez pomocy lodołamaczy nawet w sezonie nawigacyjnym, stanowiąc „wąskie gardła” całego szlaku PDM. Dla okresu od lipca do listopada podano orientacyjne ryzyko żeglugi na poszczególnych morzach dla statku samodzielnie pokonującego trasę PDM.
The paper presents the results of the detailed analysis of the evolution of the ice cover occurring currently (1979-2013) on the Russian Arctic seas (Fig. 2-19), through which leading the Northern Sea Route (NSR) as well as the results of the detailed analysis of the length of the navigation season (the period in which the ice concentration does not exceed 15%). In recent years (2002-2013) was noted a clear improvement of potential navigation conditions, although these conditions on the Laptev Sea and the East Siberian Sea are still very difficult and labile, even during periods of the smallest development of the ice cover (second half of August – the first half of October). The analysis of the length of the "ice-free" period, during which an ice conditions allow for relatively free navigation of vessels without a high ice class shown that in the current, very mild ice conditions, routes leading through the Laptev Sea and East Siberian Sea do not guarantee ”ice-free” navigation without assistance of icebreakers in the navigation season each year, being the "bottlenecks" of the entire route NSR. An approximate risk to navigation of the ship overcoming the NSR alone in the period from July to November has been determined for each sea (Table 1).
Źródło:
Problemy Klimatologii Polarnej; 2014, 24; 73-99
1234-0715
Pojawia się w:
Problemy Klimatologii Polarnej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Przebieg wartości wskaźnika oceanizmu w rejonie Cieśniny Beringa w drugiej połowie XX i początku XXI wieku
The course of the value of oceanicity index in the region of the Bering Strait in the second half of the twentieth and early twenty-first century
Autorzy:
Zblewski, S.
Marsz, A. A.
Powiązania:
https://bibliotekanauki.pl/articles/260794.pdf
Data publikacji:
2013
Wydawca:
Stowarzyszenie Klimatologów Polskich
Tematy:
zmiany klimatu
oceanizm
kontynentalizm
Alaska
Czukotka
PDO
lody morskie
climate changes
oceanicity
contynentality
Chukchi
sea ice
Opis:
Praca omawia zmienność wskaźnika oceanizmu (Oc) na obszarze Beryngii, stanowiącej obszary lądowe i akweny rozciągające się wokół Cieśniny Beringa, w latach 1951-2010. Wskaźnik Oc stanowi miarę stopnia oceaniczności i kontynentalizmu klimatu. Analizy wykazały relatywnie niewielkie zróżnicowanie przestrzenne rozkładu Oc. Obszary występowania klimatu suboceanicznego lokują się na SE części M. Beringa i NE części Zatoki Alaska, pozostałe obszary i akweny objęte są domeną klimatu kontynentalnego. Zmienność w czasie stopnia oceanizmu jest minimalna. Najsilniejsze i istotne statystycznie trendy występują na obszarze SW Alaski. Analiza skorelowania zmian wskaźnika Oc w funkcji czasu dzieli cały obszar na dwa autonomiczne rejony. Pierwszy lokuje się na obszarze S wybrzeży Alaski i w jej interiorze (bez wybrzeży Morza Beauforta) – występują w nim wyłącznie dodatnie trendy wskaźnika Oc, w przewadze silne i statystycznie istotne, a przebiegi zmienności Oc są ze sobą silnie skorelowane. Drugi rejon obejmuje pozostałe obszary i akweny. Stacje tej grupy charakteryzują się słabymi, nieistotnymi trendami o znakach zarówno dodatnich jak i ujemnych, a zachodzące w czasie zmiany Oc wykazują słabsze korelacje między stacjami. Korelacje przebiegów wskaźników Oc między stacjami obu rejonów są słabe i w przewadze nieistotne. Zróżnicowanie przestrzennego rozkładu zmienności wskaźnika Oc jest związane z zasięgiem atmosferycznego oddziaływania PDO (Pacific Decadal Oscillation). Zmienność PDO, poprzez zmiany głębokości i lokalizacji Niżu Aleuckiego regulującego intensywność adwekcji cieplejszego powietrza morskiego nad Alaskę, wymuszała po roku 1976 wzrost oceanizacji klimatu nad południowymi wybrzeżami i interiorem Alaski. Nad pozostałym obszarem przeważały w tym czasie adwekcje mas powietrza z północy. W rejonie Cieśniny i Morza Beringa oraz Morza Czukockiego zaznacza się wpływ zmian zasięgu lodów morskich na przebieg procesów zmian kontynentalizmu i oceanizmu klimatu.
The work discusses the variability of oceanicity index (Oc) in the area of Beryngia, which covers land area and sea areas extending around the Bering Strait (Fig. 1) in the years 1951-2010. Oceanicity index is the measure of the degree of climatic oceanicity and continentality. The carried out analysis showed relatively little variation in spatial distribution of oceanicity in the analyzed area. Areas with sub-oceanic climate are located at the SE part of the Bering Sea and the NE part of the Gulf of Alaska (St Paul Isl., Kodiak, Homer stations), other land and sea areas are under the influence of continental climate with centers over Chukotka (Markovo, Enmuveen) and in the interior of Alaska (Fairbanks, Mc Grath, Big Delta).Variability in time of degree of oceanicity in the analyzed area is minimum – trends of Oc index are very weak and predominantly insignificant. The strongest and statistically significant trends are present over the area of SW Alaska (+0.006 Oc•year-1 in King Salmon, +0,005 in Homer, +0.004 inTalkeetna, +0.003 Oc•year-1 in Big Delta and Bethel).The analysis of correlation of changes in Oc index as a function of time divides the whole area into two autonomous regions – the first (B) is located in the area of the southern coast of Alaska and in the interior of Alaska (without the coast of the Beaufort Sea) and the other one (A) covers the remaining areas and waters. Only positive trends of Oc index predominantly strong and statistically significant are observed at the stations from group B and the courses of Oc variability are strongly and very closely correlated with one another. Stations of group A are characterized by weak, insignificant trends with both positive and negative signs and the changes in the time of Oc index show weaker correlations between stations. Correlations of courses of Oc index between the stations of group A and group B are weak and predominantly insignificant – changes in the two groups do not take place synchronously. This differentiation of spatial distribution of the Oc index variability is associated with range of the atmospheric influence of the PDO (Pacific Decadal Oscillation). Changes in the depth and location of the Aleutian Low regulating the intensity of advection of warmer maritime air over Alaska had influence on the variability of the PDO which after 1976 enforced an increase in oceanicity of climate over the southern coasts and the observed. At that time advection of air masses from the north prevailed, with varying intensity, in areas with stations assigned to group A. A visible influence of changes in sea ice extent on the process of changes in climatic continentality and oceanicity is observed particularly in the Strait and the Bering Sea and the Chukchi Sea.
Źródło:
Problemy Klimatologii Polarnej; 2013, 23; 57-76
1234-0715
Pojawia się w:
Problemy Klimatologii Polarnej
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies