- Tytuł:
- Vertices Contained In All Or In No Minimum Semitotal Dominating Set Of A Tree
- Autorzy:
-
Henning, Michael A.
Marcon, Alister J. - Powiązania:
- https://bibliotekanauki.pl/articles/31341173.pdf
- Data publikacji:
- 2016-02-01
- Wydawca:
- Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
- Tematy:
-
domination
semitotal domination
trees - Opis:
- Let G be a graph with no isolated vertex. In this paper, we study a parameter that is squeezed between arguably the two most important domination parameters; namely, the domination number, γ(G), and the total domination number, γt(G). A set S of vertices in a graph G is a semitotal dominating set of G if it is a dominating set of G and every vertex in S is within distance 2 of another vertex of S. The semitotal domination number, γt2(G), is the minimum cardinality of a semitotal dominating set of G. We observe that γ(G) ≤ γt2(G) ≤ γt(G). We characterize the set of vertices that are contained in all, or in no minimum semitotal dominating set of a tree.
- Źródło:
-
Discussiones Mathematicae Graph Theory; 2016, 36, 1; 71-93
2083-5892 - Pojawia się w:
- Discussiones Mathematicae Graph Theory
- Dostawca treści:
- Biblioteka Nauki