Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Marcinkowska-Ochtyra, A." wg kryterium: Autor


Wyświetlanie 1-4 z 4
Tytuł:
Mapa geomorfologiczna województw pomorskiego i warmińsko-mazurskiego z wykorzystaniem metod geoinformatycznych
Geomorphological map of pomorskie and warmińsko-mazurskie voivodeships using geoinformatics methods
Autorzy:
Marcinkowska, A.
Ochtyra, A.
Olędzki, J. R.
Wołk-Musiał, E.
Zagajewski, B.
Powiązania:
https://bibliotekanauki.pl/articles/132207.pdf
Data publikacji:
2013
Wydawca:
Polskie Towarzystwo Geograficzne
Tematy:
forma
rzeźba
geomorfologia
Landsat
mapa cyfrowa
województwo podlaskie
województwo pomorskie
województwo warmińsko-mazurskie
wektoryzacja
zdjęcie satelitarne
landform
geomorphology
digital map
podlaskie voivodeship
pomorskie voivodeship
warmińsko-mazurskie voivodeship
vectorization
satellite image
Opis:
The aim of this study was to prepare geomorphological maps of pomorskie and warminsko-mazurskie voivodeships in scale 1:300 000. Analysis primarily were based on the General Geomorphological Map of Poland 1:500 000 and Landsat 5 TM satellite images in RGB 453 composition, and alternatively with Geological Map of Poland 1:200 000, Topographic Map of Poland 1:100 000 and Digital Terrain Model from Shuttle Radar Topography Mission. These materials were processed into digital form and imported them PUWG 1992 coordinate system. Based on them was lead interpretation and vectorization of geomorphological forms. It was detailing the boundaries in accordance with the content of the General Geomorphological Map of Poland 1:500 000. Then polygons were coded according to the numbering of J. Borzuchowski (2010). Very important was process to design a legend and then editing maps. The last stage of this study was to prepare a composition for printing maps. The effect of studies are geomorphological maps of pomorskie and warminsko-mazurskie voivodeships in scale 1:300 000, and an interactive databases in ESRI shapefile format (*.shp).
Źródło:
Teledetekcja Środowiska; 2013, 49; 43-79
1644-6380
Pojawia się w:
Teledetekcja Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Określenie składu gatunkowego lasów Góry Chojnik (Karkonoski Park Narodowy) z wykorzystaniem lotniczych danych hiperspektralnych APEX
Identification of tree species in Mt Chojnik (Karkonoski National Park) forest using airborne hyperspectal APEX data
Autorzy:
Raczko, E.
Zagajewski, B.
Ochtyra, A.
Jarocińska, A.
Marcinkowska-Ochtyra, A.
Dobrowolski, M.
Powiązania:
https://bibliotekanauki.pl/articles/989774.pdf
Data publikacji:
2015
Wydawca:
Polskie Towarzystwo Leśne
Tematy:
lesnictwo
Karkonoski Park Narodowy
gory
Chojnik
lasy
sklad gatunkowy
metody badan
teledetekcja
pomiary hiperspektralne
skaner APEX
svm classification
apex hyperspectral data
species structure
Opis:
We used hyperspectral data from APEX scanner (288 spectral bands in 380−2500 nm spectral range; 3,5 m spatial resolution) to classify five tree species occurring in the area of Mt. Chojnik in the Karkonoski National Park (south−western Poland). Data used to delimit learning and verification polygons were acquired during field research in August 2013, when ground truth polygons were acquired using device equipped with GPS receiver. Raw APEX data went through radiometric and geometric correction at VITO office. To reduce processing time, 40 most informative bands were selected using information content analysis. The Support Vector Machines (SVM) algorithm was used for classification of the following tree species: Fagus sylvatica L., Betula pendula Roth, Pinus sylvestris L., Picea alba L. Karst and Larix decidua Mill. Final classification had 78.66% overall accuracy with Kappa coefficient equal to 0.71. The best classified species included beech (87.09%) and pine (83.96%), while the worst results were obtained for larch (60.29%). Low accuracy for larch could be caused by the fact that most of larch trees in the research area grow in small patches, which made it hard to specify large enough sample of training data. All classified tree species had producer's accuracy of at least 60%, with the highest value reaching 87%. User's accuracies were from 53% for pine to 85% for beech. It is possible to classify tree species using hyperspectral data with moderate to high accuracy even if the data used lacked atmospheric correction. Further work will focus on improving the classification accuracy and use of neural networks based classification methods. Results from this paper will serve as basis for tree species map of the Karkonoski National Park.
Źródło:
Sylwan; 2015, 159, 07; 593-599
0039-7660
Pojawia się w:
Sylwan
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Ocena kondycji drzewostanów Tatrzańskiego Parku Narodowego za pomocą metody drzewa decyzyjnego oraz wielospektralnych obrazów satelitarnych Landsat 5 TM
Assessment of the condition of forests in the Tatra National Park using decision tree method and multispectral Landsat TM satellite images
Autorzy:
Ochtyra, A.
Zagajewski, B.
Kozłowska, A.
Marcinkowska-Ochtyra, A.
Jarocińska, A.
Powiązania:
https://bibliotekanauki.pl/articles/972978.pdf
Data publikacji:
2016
Wydawca:
Polskie Towarzystwo Leśne
Tematy:
drzewostany
kondycja drzew
metody oceny
drzewa decyzyjne
teledetekcja satelitarna
obrazy satelitarne
satelita Landsat TM
leśnictwo
lasy górskie
Tatrzański Park Narodowy
forest
assessment of condition
vegetation indices
remote sensing
the Tatras
Landsat TM
Opis:
The paper presents a method of Landsat 5 Thematic Mapper satellite image processing to assess the condition of forests in the Tatra National Park (southern Poland). Selected images were acquired on 1987/09/01, 2005/09/02 and 2011/09/03 from the same sensor with maximum time interval for the first and last scene and from similar phenological period. Firstly, the data were radiometrically corrected using the ATCOR 2/3 software and Digital Terrain Model from the ASTER mission. Quality of the correction was assessed calculating RMSE for reflectance values from images and resampled spectral characteristics collected in terrain. RMSE was in range 3−10%. Next, basing on Landsat images, Normalized Difference Infrared Index (NDII) and a Maximum Likelihood supervised classificatory, following dominant land cover types were identified: forests (including dwarf pine), grasslands, rocks, lakes, shadows (additionally clouds were dis−tinguished on data from 1987/09/01). It allowed to select forest areas with producer accuracy not worse than 97.69% and user accuracy not worse than 98.31%. On corrected Landsat images Normalized Difference Vegetation Index (NDVI, an overall vegetation state) and Moisture Stress Index (MSI, canopy water content) were calculated. Vegetation indices discriminated forest state using the decision tree method. The worst overall condition was observed for the 1987 (about 21% of forest stands were in the worst condition and 87% were in medium condition), while the best one in 2005 (75.51% forest stands were in good condition and 10.66% were in the best condition). In case of 2011, the overall condition was quite good, but there were large areas with poor condition caused by bark beetle outbreaks. Proposed method allows for a fast and objective assessment of forest condition. It is possible to detect damaged areas or stands in poor condition. It can be complement for traditional methods of monitoring and management in forestry and nature protection.
Źródło:
Sylwan; 2016, 160, 03; 256-264
0039-7660
Pojawia się w:
Sylwan
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Application of Sentinel-2 and EnMAP new satellite data to the mapping of alpine vegetation of the Karkonosze Mountains
Autorzy:
Jędrych, M.
Zagajewski, B.
Marcinkowska-Ochtyra, A.
Powiązania:
https://bibliotekanauki.pl/articles/92448.pdf
Data publikacji:
2017
Wydawca:
Oddział Kartograficzny Polskiego Towarzystwa Geograficznego
Tematy:
Sentinel-2
EnMAP
classification
alpine vegetation
satellite systems
Opis:
Effective assessment of environmental changes requires an update of vegetation maps as it is an indicator of both local and global development. It is therefore important to formulate methods which would ensure constant monitoring. It can be achieved with the use of satellite data which makes the analysis of hard-to-reach areas such as alpine ecosystems easier. Every year, more new satellite data is available. Its spatial, spectral, time, and radiometric resolution is improving as well. Despite significant achievements in terms of the methodology of image classification, there is still the need to improve it. It results from the changing needs of spatial data users, availability of new kinds of satellite sensors, and development of classification algorithms. The article focuses on the application of Sentinel-2 and hyperspectral EnMAP images to the classification of alpine plants of the Karkonosze (Giant) Mountains according to the: Support Vector Machine (SVM), Random Forest (RF), and Maximum Likelihood (ML) algorithms. The effects of their work is a set of maps of alpine and subalpine vegetation as well as classification error matrices. The achieved results are satisfactory as the overall accuracy of classification with the SVM method has reached 82% for Sentinel-2 data and 83% for EnMAP data, which confirms the applicability of image data to the monitoring of alpine plants.
Źródło:
Polish Cartographical Review; 2017, 49, 3; 107-119
2450-6974
Pojawia się w:
Polish Cartographical Review
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies