Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Majda-Zdancewicz, E." wg kryterium: Autor


Wyświetlanie 1-2 z 2
Tytuł:
Selekcja cech osobniczych sygnału mowy z wykorzystaniem algorytmów genetycznych
Selection of individual features of a speech signal using genetic algorithms
Autorzy:
Kamiński, K.
Dobrowolski, A. P.
Majda-Zdancewicz, E.
Powiązania:
https://bibliotekanauki.pl/articles/949807.pdf
Data publikacji:
2016
Wydawca:
Wojskowa Akademia Techniczna im. Jarosława Dąbrowskiego
Tematy:
biometria
automatyczne rozpoznawanie mówcy
algorytmy genetyczne
selekcja cech
biometrics
automatic speaker recognition
genetic algorithms
feature selection
Opis:
W artykule przedstawiono system automatycznego rozpoznawania mówcy zaimplementowany w środowisku Matlab oraz pokazano sposoby realizacji i optymalizacji poszczególnych elementów tego systemu. Główny nacisk położono na wyselekcjonowanie cech dystynktywnych głosu mówcy z wykorzystaniem algorytmu genetycznego, który pozwala na uwzględnienie synergii cech podczas selekcji. Pokazano również wyniki optymalizacji wybranych elementów klasyfikatora, m.in. liczby rozkładów Gaussa użytych do zamodelowania każdego z głosów. Ponadto, podczas tworzenia modeli poszczególnych głosów zastosowano uniwersalny model głosów.
The paper presents an automatic speaker’s recognition system, implemented in the Matlab environment, and demonstrates how to achieve and optimize various elements of the system. The main emphasis was put on features selection of a speech signal using a genetic algorithm which takes into account synergy of features. The results of optimization of selected elements of a classifier have been also shown, including the number of Gaussian distributions used to model each of the voices. In addition, for creating voice models, a universal voice model has been used.
Źródło:
Biuletyn Wojskowej Akademii Technicznej; 2016, 65, 1; 147-158
1234-5865
Pojawia się w:
Biuletyn Wojskowej Akademii Technicznej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Klasyfikacja słuchowych potencjałów wywołanych w oparciu o dekompozycję falkową i sieć SVM
Classification of Auditory Evoked Potentials based on the wavelet decomposition and SVM network
Autorzy:
Suchocki, M.
Dobrowolski, A.
Majda-Zdancewicz, E.
Tomczykiewicz, K.
Powiązania:
https://bibliotekanauki.pl/articles/210448.pdf
Data publikacji:
2015
Wydawca:
Wojskowa Akademia Techniczna im. Jarosława Dąbrowskiego
Tematy:
inżynieria biomedyczna
słuchowe potencjały wywołane pnia mózgu
dekompozycja falkowa
sieć wektorów nośnych
biomedical engineering
brainstem auditory evoked potentials
wavelet decomposition
support vector machine (SVM)
Opis:
W elektrofizjologicznej ocenie słuchu oraz diagnozowaniu uszkodzeń pnia mózgu najczęściej wykorzystuje się słuchowe potencjały wywołane pnia mózgu o krótkiej latencji. Charakteryzują się one kolejno ułożonymi w funkcji czasu maksimami, zwanymi załamkami lub falami. Morfologia przebiegu, a w szczególności zależności czasowe i amplitudowe poszczególnych załamków, umożliwiają neurologowi postawienie diagnozy, co nie jest zadaniem prostym. Wymaga od neurologa doświadczenia, skupienia uwagi i bardzo dobrej percepcji. W celu wsparcia procesu diagnostycznego autorzy opracowali algorytm realizujący zautomatyzowaną klasyfikację słuchowych potencjałów wywołanych do grupy przypadków patologicznych i fizjologicznych, z czułością i specyficznością określoną na niezależnej grupie testowej liczącej 50 przypadków, wynoszącą odpowiednio 84% i 88%.
For electrophysiological hearing assessment and diagnosis of brain stem lesions, the most often used are auditory brainstem evoked potentials of short latency. They are characterized by successively arranged maxima as a function of time, called waves. Morphology of the course, in particular, the timing and amplitude of each wave, allow a neurologist to make diagnose, what is not an easy task. A neurologist should be experienced, concentrated, and should have very good perception. In order to support his diagnostic process, the authors have developed an algorithm implementing the automated classification of auditory evoked potentials to the group of pathological and physiological cases, the sensitivity and specificity determined for an independent test group (of 50 cases) of respectively 84% and 88%.
Źródło:
Biuletyn Wojskowej Akademii Technicznej; 2015, 64, 4; 117-129
1234-5865
Pojawia się w:
Biuletyn Wojskowej Akademii Technicznej
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies