Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Magnant, Colton" wg kryterium: Autor


Wyświetlanie 1-6 z 6
Tytuł:
Coloring rectangular blocks in 3-space
Autorzy:
Magnant, Colton
Martin, Daniel
Powiązania:
https://bibliotekanauki.pl/articles/743845.pdf
Data publikacji:
2011
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
chromatic number
channel assignment problem
3 dimensional rectangular blocks
Opis:
If rooms in an office building are allowed to be any rectangular solid, how many colors does it take to paint any configuration of rooms so that no two rooms sharing a wall or ceiling/floor get the same color? In this work, we provide a new construction which shows this number can be arbitrarily large.
Źródło:
Discussiones Mathematicae Graph Theory; 2011, 31, 1; 161-170
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A decomposition of Gallai multigraphs
Autorzy:
Halperin, Alexander
Magnant, Colton
Pula, Kyle
Powiązania:
https://bibliotekanauki.pl/articles/30148236.pdf
Data publikacji:
2014-05-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
edge coloring
Gallai multigraph
Opis:
An edge-colored cycle is rainbow if its edges are colored with distinct colors. A Gallai (multi)graph is a simple, complete, edge-colored (multi)graph lacking rainbow triangles. As has been previously shown for Gallai graphs, we show that Gallai multigraphs admit a simple iterative construction. We then use this structure to prove Ramsey-type results within Gallai colorings. Moreover, we show that Gallai multigraphs give rise to a surprising and highly structured decomposition into directed trees
Źródło:
Discussiones Mathematicae Graph Theory; 2014, 34, 2; 331-352
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On Proper (Strong) Rainbow Connection of Graphs
Autorzy:
Jiang, Hui
Li, Wenjing
Li, Xueliang
Magnant, Colton
Powiązania:
https://bibliotekanauki.pl/articles/32083886.pdf
Data publikacji:
2021-05-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
proper (strong) rainbow connection number
Cartesian product
chromatic index
Opis:
A path in an edge-colored graph $G$ is called a rainbow path if no two edges on the path have the same color. The graph $G$ is called rainbow connected if between every pair of distinct vertices of $G$, there is a rainbow path. Recently, Johnson et al. considered this concept with the additional requirement that the coloring of $G$ is proper. The proper rainbow connection number of $G$, denoted by $prc(G)$, is the minimum number of colors needed to properly color the edges of $G$ so that $G$ is rainbow connected. Similarly, the proper strong rainbow connection number of $G$, denoted by $psrc(G)$, is the minimum number of colors needed to properly color the edges of $G$ such that for any two distinct vertices of $G$, there is a rainbow geodesic (shortest path) connecting them. In this paper, we characterize those graphs with proper rainbow connection numbers equal to the size or within 1 of the size. Moreover, we completely solve a question proposed by Johnson et al. by proving that if \(G = K_{p1} \Box \dots \Box K_{pn}\), where $n≥ 1$, and $p_1, . . ., p_n>1$ are integers, then $prc(G) = psrc(G) = χ^′(G)$, where $χ^′(G)$ denotes the chromatic index of $G$. Finally, we investigate some suffcient conditions for a graph $G$ to satisfy $prc(G) = rc(G)$, and make some slightly positive progress by using a relation between $rc(G)$ and the girth of the graph.
Źródło:
Discussiones Mathematicae Graph Theory; 2021, 41, 2; 469-479
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Generalized Rainbow Connection of Graphs and their Complements
Autorzy:
Li, Xueliang
Magnant, Colton
Wei, Meiqin
Zhu, Xiaoyu
Powiązania:
https://bibliotekanauki.pl/articles/31342420.pdf
Data publikacji:
2018-05-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
ℓ-rainbow path
( k, ℓ)-rainbow connected
( k, ℓ)-rainbow connection number
Opis:
Let $G$ be an edge-colored connected graph. A path $P$ in $G$ is called $ \mathcal{l} $-rainbow if each subpath of length at most $ \mathcal{l} + 1 $ is rainbow. The graph $G$ is called $(k, \mathcal{l} )$-rainbow connected if there is an edge-coloring such that every pair of distinct vertices of $G$ is connected by $k$ pairwise internally vertex-disjoint $ \mathcal{l} $-rainbow paths in $G$. The minimum number of colors needed to make $G$ $(k, \mathcal{l})$-rainbow connected is called the $ (k, \mathcal{l} )$-rainbow connection number of $G$ and denoted by $ rc_{ k,\mathcal{l} } (G) $. In this paper, we first focus on the (1, 2)-rainbow connection number of $G$ depending on some constraints of $ \overline{G} $. Then, we characterize the graphs of order $n$ with (1, 2)-rainbow connection number $ n − 1 $ or $ n − 2 $. Using this result, we investigate the Nordhaus-Gaddum-Type problem of (1, 2)-rainbow connection number and prove that $ rc_{1,2}(G) + rc_{1,2}( \overlina{G} ) \le n + 2 $ for connected graphs $ G $ and $ \overline{G} $. The equality holds if and only if $G$ or $ \overline{G} $ is isomorphic to a double star.
Źródło:
Discussiones Mathematicae Graph Theory; 2018, 38, 2; 371-384
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Chvátal-Erdös type theorems
Autorzy:
Faudree, Jill
Faudree, Ralph
Gould, Ronald
Jacobson, Michael
Magnant, Colton
Powiązania:
https://bibliotekanauki.pl/articles/744255.pdf
Data publikacji:
2010
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
Hamiltonian
Hamiltonian-connected
Chvátal-Erdös condition
independence number
Opis:
The Chvátal-Erdös theorems imply that if G is a graph of order n ≥ 3 with κ(G) ≥ α(G), then G is hamiltonian, and if κ(G) > α(G), then G is hamiltonian-connected. We generalize these results by replacing the connectivity and independence number conditions with a weaker minimum degree and independence number condition in the presence of sufficient connectivity. More specifically, it is noted that if G is a graph of order n and k ≥ 2 is a positive integer such that κ(G) ≥ k, δ(G) > (n+k²-k)/(k+1), and δ(G) ≥ α(G)+k-2, then G is hamiltonian. It is shown that if G is a graph of order n and k ≥ 3 is a positive integer such that κ(G) ≥ 4k²+1, δ(G) > (n+k²-2k)/k, and δ(G) ≥ α(G)+k-2, then G is hamiltonian-connected. This result supports the conjecture that if G is a graph of order n and k ≥ 3 is a positive integer such that κ(G) ≥ k, δ(G) > (n+k²-2k)/k, and δ(G) ≥ α(G)+k-2, then G is hamiltonian-connected, and the conjecture is verified for k = 3 and 4.
Źródło:
Discussiones Mathematicae Graph Theory; 2010, 30, 2; 245-256
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The Proper Diameter of a Graph
Autorzy:
Coll, Vincent
Hook, Jonelle
Magnant, Colton
McCready, Karen
Ryan, Kathleen
Powiązania:
https://bibliotekanauki.pl/articles/32062335.pdf
Data publikacji:
2020-02-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
diameter
properly connected
proper diameter
Opis:
A proper edge-coloring of a graph is a coloring in which adjacent edges receive distinct colors. A path is properly colored if consecutive edges have distinct colors, and an edge-colored graph is properly connected if there exists a properly colored path between every pair of vertices. In such a graph, we introduce the notion of the graph’s proper diameter—which is a function of both the graph and the coloring—and define it to be the maximum length of a shortest properly colored path between any two vertices in the graph. We consider various families of graphs to find bounds on the gap between the diameter and possible proper diameters, paying singular attention to 2-colorings.
Źródło:
Discussiones Mathematicae Graph Theory; 2020, 40, 1; 107-125
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-6 z 6

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies