- Tytuł:
- Noise quantization simulation analysis of optical convolutional networks
- Autorzy:
-
Zhang, Ye
Zhang, Saining
Zhang, Danni
Su, Yanmei
Yi, Junkai
Wang, Pengfei
Wang, Ruiting
Luo, Guangzhen
Zhou, Xuliang
Pan, Jiaoqing - Powiązania:
- https://bibliotekanauki.pl/articles/27310111.pdf
- Data publikacji:
- 2023
- Wydawca:
- Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
- Tematy:
-
optical neural network
convolutional neural network
noise
quantization - Opis:
- Optical neural network (ONN) has been regarded as one of the most prospective techniques in the future, due to its high-speed and low power cost. However, the realization of optical convolutional neural network (CNN) in non-ideal cases still remains a big challenge. In this paper, we propose an optical convolutional networks system for classification problems by applying general matrix multiply (GEMM) technology. The results show that under the influence of noise, this system still has good performance with low TOP-1 and TOP-5 error rates of 44.26% and 14.51% for ImageNet. We also propose a quantization model of CNN. The noise quantization model reaches a sufficient prediction accuracy of about 96% for MNIST handwritten dataset.
- Źródło:
-
Optica Applicata; 2023, 53, 3; 483--493
0078-5466
1899-7015 - Pojawia się w:
- Optica Applicata
- Dostawca treści:
- Biblioteka Nauki