Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Liu, Haiqing" wg kryterium: Autor


Wyświetlanie 1-2 z 2
Tytuł:
Ultra-short-term wind power prediction based on copula function and bivariate EMD decomposition algorithm
Autorzy:
Liu, Haiqing
Lin, Weijian
Li, Yuancheng
Powiązania:
https://bibliotekanauki.pl/articles/140702.pdf
Data publikacji:
2020
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
bivariate EMD decomposition
copula function
GRU network
meteorological factor
ultra-short-term wind power prediction
Opis:
Against the background of increasing installed capacity of wind power in the power generation system, high-precision ultra-short-term wind power prediction is significant for safe and reliable operation of the power generation system. We present a method for ultra-short-term wind power prediction based on a copula function, bivariate empirical mode decomposition (BEMD) algorithm and gated recurrent unit (GRU) neural network. First we use the copula function to analyze the nonlinear correlation between wind power and external factors to extract the key factors influencing wind power generation. Then the joint data composed of the key factors and wind power are decomposed into a series of stationary subsequence data by a BEMD algorithm which can decompose the bivariate data jointly. Finally, the prediction model based on a GRU network uses the decomposed data as the input to predict the power output in the next four hours. The experimental results show that the proposed method can effectively improve the accuracy of ultra-short-term wind power prediction.
Źródło:
Archives of Electrical Engineering; 2020, 69, 2; 271-286
1427-4221
2300-2506
Pojawia się w:
Archives of Electrical Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Intelligent optimal dispatching of active distribution network using modified flower pollination algorithm
Autorzy:
Liu, Haiqing
Qu, Jinmeng
Yang, Shanshan
Li, Yuancheng
Powiązania:
https://bibliotekanauki.pl/articles/141562.pdf
Data publikacji:
2020
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
active distribution network
flower pollination
optimal dispatching
power quality
Opis:
In order to solve the problem of harmonic waves caused by battery energy storage (BES) and distributed generation (DG) inverters in an active distribution network, an intelligent optimal dispatching method based on a modified flower pollination algorithm (MFPA) is proposed. Firstly, the active distribution network dispatching model considering the power quality (PQ) problem caused by BES and DG is proposed. In this model, the objective function considers the additional network loss caused by a harmonic wave, as well as the constraints of the harmonic wave and voltage unbalance. Then, the MFPA is an improvement of a flower pollination algorithm (FPA). Because the MFPA has the characteristics of higher solution accuracy and better convergence than the FPA and it is not easy to fall into local optimal, the MFPA is used to solve the proposed model. Finally, simulation experiments are carried out on IEEE 37 bus and IEEE 123 bus systems, respectively. The experimental results show that this method can achieve satisfactory power quality while optimizing the total active power loss of the branch. The comparative experimental results show that the developed algorithm has better convergence than the FPA.
Źródło:
Archives of Electrical Engineering; 2020, 69, 1; 159-174
1427-4221
2300-2506
Pojawia się w:
Archives of Electrical Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies