Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Li, Jianfeng" wg kryterium: Autor


Wyświetlanie 1-2 z 2
Tytuł:
A single upper limb pose estimation method based on the improved stacked hourglass network
Autorzy:
Peng, Gang
Zheng, Yuezhi
Li, Jianfeng
Yang, Jin
Powiązania:
https://bibliotekanauki.pl/articles/1838179.pdf
Data publikacji:
2021
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
convolutional neural network
stacked hourglass network
skeleton key point
single upper limb pose estimation
human machine coordination
Opis:
At present, most high-accuracy single-person pose estimation methods have high computational complexity and insufficient real-time performance due to the complex structure of the network model. However, a single-person pose estimation method with high real-time performance also needs to improve its accuracy due to the simple structure of the network model. It is currently difficult to achieve both high accuracy and real-time performance in single-person pose estimation. For use in human–machine cooperative operations, this paper proposes a single-person upper limb pose estimation method based on an end-to-end approach for accurate and real-time limb pose estimation. Using the stacked hourglass network model, a single-person upper limb skeleton key point detection model is designed. A deconvolution layer is employed to replace the up-sampling operation of the hourglass module in the original model, solving the problem of rough feature maps. Integral regression is used to calculate the position coordinates of key points of the skeleton, reducing quantization errors and calculations. Experiments show that the developed single-person upper limb skeleton key point detection model achieves high accuracy and that the pose estimation method based on the end-to-end approach provides high accuracy and real-time performance.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2021, 31, 1; 123-133
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Conformational Ensemble of B Chain in $T_{6}$ Human Insulin Based on the Landau Free Energy
Autorzy:
Lei, Yanlin
He, Jianfeng
Liu, Jiaojiao
Li, Jing
Powiązania:
https://bibliotekanauki.pl/articles/1398189.pdf
Data publikacji:
2018-05
Wydawca:
Polska Akademia Nauk. Instytut Fizyki PAN
Tematy:
insulin
structural flexibility
free energy
conformational ensemble
Opis:
Insulin is an important peptide hormone for the glucose metabolism. The structural flexibility of insulin B chain attracts a lot of our attention for understanding the biological activity. Our work carried out the extensive sampling to statistically clarify the structural changes of isolated $T_{6}$ human insulin B chain. We introduced the Landau free energy to describe the isolated insulin B chain whose experimental structure locates a local energy minimum. Its trained model was subjected to thousands of heating and cooling circles between the high and low temperatures. Six typical structure clusters were found by classifying the final generated structures with RMSD and radius of gyration. The structures in clusters indicate the potential deformations of insulin B chain at residues 5-8 of N-terminus, residues 9-12 of central helix and residues 24-29 of C-terminus, which agrees with the experimental results.
Źródło:
Acta Physica Polonica A; 2018, 133, 5; 1261-1265
0587-4246
1898-794X
Pojawia się w:
Acta Physica Polonica A
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies