Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Li, Binlong" wg kryterium: Autor


Wyświetlanie 1-6 z 6
Tytuł:
Heavy Subgraphs, Stability and Hamiltonicity
Autorzy:
Li, Binlong
Ning, Bo
Powiązania:
https://bibliotekanauki.pl/articles/31341693.pdf
Data publikacji:
2017-08-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
heavy subgraphs
hamiltonian graphs
closure theory
Opis:
Let G be a graph. Adopting the terminology of Broersma et al. and Čada, respectively, we say that G is 2-heavy if every induced claw (K1,3) of G contains two end-vertices each one has degree at least |V (G)|/2; and G is o-heavy if every induced claw of G contains two end-vertices with degree sum at least |V (G)| in G. In this paper, we introduce a new concept, and say that G is S-c-heavy if for a given graph S and every induced subgraph G′ of G isomorphic to S and every maximal clique C of G′, every non-trivial component of G′ − C contains a vertex of degree at least |V (G)|/2 in G. Our original motivation is a theorem of Hu from 1999 that can be stated, in terms of this concept, as every 2-connected 2-heavy and N-c-heavy graph is hamiltonian, where N is the graph obtained from a triangle by adding three disjoint pendant edges. In this paper, we will characterize all connected graphs S such that every 2-connected o-heavy and S-c-heavy graph is hamiltonian. Our work results in a different proof of a stronger version of Hu’s theorem. Furthermore, our main result improves or extends several previous results.
Źródło:
Discussiones Mathematicae Graph Theory; 2017, 37, 3; 691-710
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On path-quasar Ramsey numbers
Autorzy:
Li, Binlong
Ning, Bo
Powiązania:
https://bibliotekanauki.pl/articles/747260.pdf
Data publikacji:
2014
Wydawca:
Uniwersytet Marii Curie-Skłodowskiej. Wydawnictwo Uniwersytetu Marii Curie-Skłodowskiej
Opis:
Let \(G_1\) and \(G_2\) be two given graphs. The Ramsey number \(R(G_1,G_2)\) is the least integer \(r\) such that for every graph \(G\) on \(r\) vertices, either \(G\) contains a \(G_1\) or \(\overline{G}\) contains a \(G_2\). Parsons gave a recursive formula to determine the values of \(R(P_n,K_{1,m})\), where \(P_n\) is a path on \(n\) vertices and \(K_{1,m}\) is a star on \(m+1\) vertices. In this note, we study the Ramsey numbers \(R(P_n,K_1\vee F_m)\), where \(F_m\) is a linear forest on \(m\) vertices. We determine the exact values of \(R(P_n,K_1\vee F_m)\) for the cases \(m\leq n\) and \(m\geq 2n\), and for the case that \(F_m\) has no odd component. Moreover, we give a lower bound and an upper bound for the case \(n+1\leq m\leq 2n-1\) and \(F_m\) has at least one odd component.
Źródło:
Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica; 2014, 68, 2
0365-1029
2083-7402
Pojawia się w:
Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
More Aspects of Arbitrarily Partitionable Graphs
Autorzy:
Bensmail, Julien
Li, Binlong
Powiązania:
https://bibliotekanauki.pl/articles/32222538.pdf
Data publikacji:
2022-11-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
arbitrarily partitionable graphs
partition into connected subgraphs
Hamiltonicity
Opis:
A graph G of order n is arbitrarily partitionable (AP) if, for every sequence (n1, . . ., np) partitioning n, there is a partition (V1, . . ., Vp) of V (G) such that G[Vi] is a connected ni-graph for i = 1, . . ., p. The property of being AP is related to other well-known graph notions, such as perfect matchings and Hamiltonian cycles, with which it shares several properties. This work is dedicated to studying two aspects behind AP graphs. On the one hand, we consider algorithmic aspects of AP graphs, which received some attention in previous works. We first establish the NP-hardness of the problem of partitioning a graph into connected subgraphs following a given sequence, for various new graph classes of interest. We then prove that the problem of deciding whether a graph is AP is in NP for several classes of graphs, confirming a conjecture of Barth and Fournier for these. On the other hand, we consider the weakening to APness of su cient conditions for Hamiltonicity. While previous works have suggested that such conditions can sometimes indeed be weakened, we here point out cases where this is not true. This is done by considering conditions for Hamiltonicity involving squares of graphs, and claw- and net-free graphs.
Źródło:
Discussiones Mathematicae Graph Theory; 2022, 42, 4; 1237-1261
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Heavy subgraph pairs for traceability of block-chains
Autorzy:
Li, Binlong
Broersma, Hajo
Zhang, Shenggui
Powiązania:
https://bibliotekanauki.pl/articles/30148234.pdf
Data publikacji:
2014-05-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
block-chain traceable graph
Ore-type condition
forbidden subgrap
$o_{−1}$-heavy subgraph
Opis:
A graph is called traceable if it contains a Hamilton path, i.e., a path containing all its vertices. Let G be a graph on n vertices. We say that an induced subgraph of G is $o_{−1}$-heavy if it contains two nonadjacent vertices which satisfy an Ore-type degree condition for traceability, i.e., with degree sum at least $n−1$ in $G$. A block-chain is a graph whose block graph is a path, i.e., it is either a $P_1$, $P_2$, or a 2-connected graph, or a graph with at least one cut vertex and exactly two end-blocks. Obviously, every traceable graph is a block-chain, but the reverse does not hold. In this paper we characterize all the pairs of connected $o_{−1}$-heavy graphs that guarantee traceability of block-chains. Our main result is a common extension of earlier work on degree sum conditions, forbidden subgraph conditions and heavy subgraph conditions for traceability
Źródło:
Discussiones Mathematicae Graph Theory; 2014, 34, 2; 287-307
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Large Degree Vertices in Longest Cycles of Graphs, I
Autorzy:
Li, Binlong
Xiong, Liming
Yin, Jun
Powiązania:
https://bibliotekanauki.pl/articles/31340944.pdf
Data publikacji:
2016-05-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
longest cycle
large degree vertices
order
connectivity
independent number
Opis:
In this paper, we consider the least integer d such that every longest cycle of a k-connected graph of order n (and of independent number α) contains all vertices of degree at least d.
Źródło:
Discussiones Mathematicae Graph Theory; 2016, 36, 2; 363-382
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Forbidden Subgraphs for Hamiltonicity of 1-Tough Graphs
Autorzy:
Li, Binlong
Broersma, Hajo J.
Zhang, Shenggui
Powiązania:
https://bibliotekanauki.pl/articles/31340596.pdf
Data publikacji:
2016-11-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
forbidden subgraph
1-tough graph
H-free graph
hamiltonian graph
Opis:
A graph G is said to be 1-tough if for every vertex cut S of G, the number of components of G − S does not exceed |S|. Being 1-tough is an obvious necessary condition for a graph to be hamiltonian, but it is not sufficient in general. We study the problem of characterizing all graphs H such that every 1-tough H-free graph is hamiltonian. We almost obtain a complete solution to this problem, leaving H = K1 ∪ P4 as the only open case.
Źródło:
Discussiones Mathematicae Graph Theory; 2016, 36, 4; 915-929
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-6 z 6

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies