Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Leszczyńska-Jasion, Dorota" wg kryterium: Autor


Wyświetlanie 1-3 z 3
Tytuł:
The Method of Socratic Proofs Meets Correspondence Analysis
Autorzy:
Leszczyńska-Jasion, Dorota
Petrukhin, Yaroslav
Shangin, Vasilyi
Powiązania:
https://bibliotekanauki.pl/articles/749950.pdf
Data publikacji:
2019
Wydawca:
Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
Tematy:
Socratic proofs
correspondence analysis
invertible rule
inferential erotetic logic
classical propositional logic
sequent calculus
Opis:
The goal of this paper is to propose correspondence analysis as a technique for generating the so-called erotetic (i.e. pertaining to the logic of questions) calculi which constitute the method of Socratic proofs by Andrzej Wiśniewski. As we explain in the paper, in order to successfully design an erotetic calculus one needs invertible sequent-calculus-style rules. For this reason, the proposed correspondence analysis resulting in invertible rules can constitute a new foundation for the method of Socratic proofs. Correspondence analysis is Kooi and Tamminga's technique for designing proof systems. In this paper it is used to consider sequent calculi with non-branching (the only exception being the rule of cut), invertible rules for the negation fragment of classical propositional logic and its extensions by binary Boolean functions.
Źródło:
Bulletin of the Section of Logic; 2019, 48, 2; 99-116
0138-0680
2449-836X
Pojawia się w:
Bulletin of the Section of Logic
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Functional Completeness in CPL via Correspondence Analysis
Autorzy:
Leszczyńska-Jasion, Dorota
Petrukhin, Yaroslav
Shangin, Vasilyi
Jukiewicz, Marcin
Powiązania:
https://bibliotekanauki.pl/articles/749866.pdf
Data publikacji:
2019
Wydawca:
Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
Tematy:
correspondence analysis
invertible rules
classical propositional logic
functional completeness
sequent calculus
automated deduction
automated rules generation
Opis:
Kooi and Tamminga's correspondence analysis is a technique for designing proof systems, mostly, natural deduction and sequent systems. In this paper it is used to generate sequent calculi with invertible rules, whose only branching rule is the rule of cut. The calculi pertain to classical propositional logic and any of its fragments that may be obtained from adding a set (sets) of rules characterizing a two-argument Boolean function(s) to the negation fragment of classical propositional logic. The properties of soundness and completeness of the calculi are demonstrated. The proof of completeness is conducted by Kalmár's method. Most of the presented sequent-calculus rules have been obtained automatically, by a rule-generating algorithm implemented in Python. Correctness of the algorithm is demonstrated. This automated approach allowed us to analyse thousands of possible rules' schemes, hundreds of rules corresponding to Boolean functions, and to nd dozens of those invertible. Interestingly, the analysis revealed that the presented proof-theoretic framework provides a syntactic characteristics of such an important semantic property as functional completeness.
Źródło:
Bulletin of the Section of Logic; 2019, 48, 1
0138-0680
2449-836X
Pojawia się w:
Bulletin of the Section of Logic
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An Investigation into Intuitionistic Logic with Identity
Autorzy:
Chlebowski, Szymon
Leszczyńska-Jasion, Dorota
Powiązania:
https://bibliotekanauki.pl/articles/750046.pdf
Data publikacji:
2019
Wydawca:
Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
Tematy:
Non-Fregean logics
intuitionistic logic
admissibility of cut
propositional identity
congruence
Opis:
We define Kripke semantics for propositional intuitionistic logic with Suszko’s identity (ISCI). We propose sequent calculus for ISCI along with cut-elimination theorem. We sketch a constructive interpretation of Suszko’s propositional identity connective.
Źródło:
Bulletin of the Section of Logic; 2019, 48, 4
0138-0680
2449-836X
Pojawia się w:
Bulletin of the Section of Logic
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies