- Tytuł:
- The Beta(p,1) extensions of the random (uniform) Cantor sets
- Autorzy:
-
Pestana, Dinis
Aleixo, Sandra
Leonel Rocha, J. - Powiązania:
- https://bibliotekanauki.pl/articles/729978.pdf
- Data publikacji:
- 2009
- Wydawca:
- Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
- Tematy:
-
order statistics
uniform spacings
random middle third Cantor set
Beta spacings
Hausdorff dimension - Opis:
- Starting from the random extension of the Cantor middle set in [0,1], by iteratively removing the central uniform spacing from the intervals remaining in the previous step, we define random Beta(p,1)-Cantor sets, and compute their Hausdorff dimension. Next we define a deterministic counterpart, by iteratively removing the expected value of the spacing defined by the appropriate Beta(p,1) order statistics. We investigate the reasons why the Hausdorff dimension of this deterministic fractal is greater than the Hausdorff dimension of the corresponding random fractals.
- Źródło:
-
Discussiones Mathematicae Probability and Statistics; 2009, 29, 2; 199-221
1509-9423 - Pojawia się w:
- Discussiones Mathematicae Probability and Statistics
- Dostawca treści:
- Biblioteka Nauki