Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Kos, Tim" wg kryterium: Autor


Wyświetlanie 1-1 z 1
Tytuł:
On Total Domination in the Cartesian Product of Graphs
Autorzy:
Brešar, Boštjan
Hartinger, Tatiana Romina
Kos, Tim
Milanič, Martin
Powiązania:
https://bibliotekanauki.pl/articles/31342240.pdf
Data publikacji:
2018-11-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
total domination
Cartesian product
total domination quotient
Opis:
Ho proved in [A note on the total domination number, Util. Math. 77 (2008) 97–100] that the total domination number of the Cartesian product of any two graphs without isolated vertices is at least one half of the product of their total domination numbers. We extend a result of Lu and Hou from [Total domination in the Cartesian product of a graph and $ K_2 $ or $ C_n $, Util. Math. 83 (2010) 313–322] by characterizing the pairs of graphs $G$ and $H$ for which $ \gamma_t (G \square H)=1/2 \gamma_t (G) \gamma_t (H) $, whenever $ \gamma_t (H) = 2 $. In addition, we present an infinite family of graphs $ G_n $ with $ \gamma_t (G_n) = 2n $, which asymptotically approximate equality in $ \gamma_t (G_n \square H_n ) \ge 1/2 \gamma_t (G_n)^2 $.
Źródło:
Discussiones Mathematicae Graph Theory; 2018, 38, 4; 963-976
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies