Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Koloskova, G. M." wg kryterium: Autor


Wyświetlanie 1-2 z 2
Tytuł:
Modelling of impact of temperature gradient on content of polymer ampoule during its forming
Autorzy:
Koloskova, G. M.
Koloskov, V. Yu.
Powiązania:
https://bibliotekanauki.pl/articles/368021.pdf
Data publikacji:
2020
Wydawca:
Stowarzyszenie Komputerowej Nauki o Materiałach i Inżynierii Powierzchni w Gliwicach
Tematy:
computational material science and mechanics
polymer ampoule
heating packaging method
temperature modelling
komputerowa nauka o materiałach
polimery
modelowanie temperatury
Opis:
Purpose: The aim of the represented study was to model the impact of temperature gradient on content of polymer ampoule during its forming. Design/methodology/approach: The model of polymer ampoules forming is built in SolidWorks software on the basis of finite element method. Using the developed model the study of temperature condition changes is carried out. Numerical modelling was carried out for two types of polymer packaging materials – polypropylene and polyvinylchloride – in similar conditions. Findings: During polymer ampoule forming the highest temperature of liquid is obtained at the bottom of it. The most effective packaging method is to form the ampoule from polypropylene by means of aluminium die. Investigation results have shown that the highest obtained liquid temperature has linear dependence from initial one. Linear coefficients of heating were evaluated for polypropylene (equal to 0.72) and polyvinylchloride (equal to 0.58). Practical implications: Decrease of initial liquid temperature value gives an opportunity to expand the range of products allowed to be packed in polymer ampoules in represented method. Safe conditions for packaging of liquid products in polymer ampoules are formulated, The results of the study may be used to improve the quality of liquid products packaging in polymer ampoules. Originality/value: For the first time the model was developed for determination of liquid heating degree during its packaging in polymer ampoules. The calculations of the temperature distribution are represented for polypropylene and polyvinylchloride ampoules forming by means of aluminium and ceramic dies. The results of the study may be of interest to specialists in the field of polymer packaging manufacturing for food or pharmaceutical industry.
Źródło:
Journal of Achievements in Materials and Manufacturing Engineering; 2020, 100, 1; 12-19
1734-8412
Pojawia się w:
Journal of Achievements in Materials and Manufacturing Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Modelling of stresses and strains in two-layer combined materials at their formation
Autorzy:
Koloskova, G. M.
Powiązania:
https://bibliotekanauki.pl/articles/379456.pdf
Data publikacji:
2019
Wydawca:
Stowarzyszenie Komputerowej Nauki o Materiałach i Inżynierii Powierzchni w Gliwicach
Tematy:
computational material science and mechanics
multi-layer combined material
stress and strain modelling
calendering method
komputerowa nauka o materiałach
wielowarstwowy materiał łączony
modelowanie naprężeń i odkształceń
Opis:
Purpose: The aim of the represented study was to model the behaviour of two-layer combined material during its manufacturing. Design/methodology/approach: The model of material layers joining by means of calender method is built in LS-DYNA software on the basis of finite element method. Using the developed model the study of stress and strain condition changes is carried out. Numerical modelling was carried out for two types of two-layer combined materials in similar conditions. First combination was of high-density polyethylene top layer and aluminium foil bottom layer. Second combination was of high-density polyethylene top layer and low- density polyethylene bottom layer. Joining materials had equal thicknesses. Findings: During formation of two-layer combined materials the primary strain always occurs at the bottom plate of the bottom layer. However, the maximum plastic strain will be represented for the layer with lower elastic modulus value. At the point of the highest loading applied to the two-layer combined material the elasticity condition is changed to the plasticity one and the yield process is registered. Practical implications: Multi-layer combined materials are some of the most advanced types of materials. The quality of the joining of the layers, the strains and the stresses arising in their manufacturing process are the main causes of low interlayer strength. It leads to easy exfoliation and destruction of the material. The results of the study may be used to improve the quality of multi-layer combined materials. Originality/value: For the first time the model was developed for the determination of strains and stresses arising during the formation of multi-layer combined materials by means of calendering method. The calculations of the stresses and strains distribution dynamics for two-layer combined materials are represented for polymer-metal and polymer-polymer layers combinations. The results of the study may be of interest to specialists in the field of multi-layer combined materials designing and manufacturing.
Źródło:
Archives of Materials Science and Engineering; 2019, 97, 1/2; 12-19
1897-2764
Pojawia się w:
Archives of Materials Science and Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies