- Tytuł:
-
Wpływ zawartości flokulantu Magnaflog 336 na przebieg filtracji ciśnieniowej kopalnianej zawiesiny zrzutowej po wirówkach BIRDa
Influence of Magnaflog 336 flocculent content on the pressure filtration of mine dump suspension after BIRD centrifuge - Autorzy:
-
Palica, M.
Kocy, G.
Kurowski, Ł.
Pławecka, A. - Powiązania:
- https://bibliotekanauki.pl/articles/1825977.pdf
- Data publikacji:
- 2008
- Wydawca:
- Politechnika Koszalińska. Wydawnictwo Uczelniane
- Tematy:
-
filtracja wirowa
flokulant
Magnaflog 336 - Opis:
- Recovery of solid phase containing about 82% of coal in dry matter from mine dump suspension after the BIRD centrifuge and filtrate recirculation is important from the environmental point of view. Such phase separation is very difficult in the existing system due to the increase of concentration of the smallest solid phase fractions in liquid during a course of the process finally resulting in periodical exchange of circulating liquid. Among possible methods facilitating the separation, pressure filtration of settled in a clarifier sludge formed during sedimentation of dump suspension containing appropriate amount of Magnaflog 336 flocculant seems to be the promising one. In presented research, the usefulness of PT-912 filter cloth in the separation process (pressure and centrifugal filtration) was proved. The main goal of the investigations was the determination of optimal dosage of Magnaflog 336 flocculant in dump suspension and comparison of this value with the ones currently used in industrial practice. Tests were also performed to confirm that the separation process proceeded in agreement with the compressible cake formation model, and PT-912 filter cloth behaved according to the filtration theory. Filtration parameters measured or calculated on the base of experiments allowed one to compare experimental results with the Sorensen model (i.e. the of model of sediment filtration accompanied by filter cake compression). A full compatibility between the model and experimental results for dump suspension with and without addition of Magnaflog 336 flocculant was proved. It was stated that the dry flocculant dosage used in industrial practice equal to 3.2 g/m3 susp. (this value corresponded to 12.8 mg/4 dm3 susp. in the laboratory mixer) was overestimated with respect to the data in Fig.1. Flocculation occurred for the 40% smaller dosage than abovementioned, i.e. equal to about 1.9 g/m3 susp. The analysis of constants K' in Fig.1 proved that the addition of flocculant was necessary. Namely, flocculant dosage equal to 1.9 g/m3 susp. increased the decisive rate constant K' 2.2-3.3- folded. Flocculant addition did not change significantly moisture content in sediment after pressure filtration. For the pressure equal to about 0.2 MPa one can expect a value of the cake moisture content in the range 40.0-41.0%, while for the pressure about 1.6 MPa - 36.5-37.0%. Regardless the amount of flocculant (in the range 0.5-1.5 g/m3 susp., i.e. 2-6 g/m3 susp.) one obtained (except for one experimental result) similar values of the sediment compressibility coefficient according to Spery (s = 0.222-0.239) or Tiller and Leu (s = 0.45-0.55). In the tests performed the limiting porosity was ?0 = 0.57-0.64, while the porosity coefficient of susceptibility to pressure was in the range ß = 0.041-0.084. It was proved that the resistance of the filter medium Rk increased with the increase of flocculant amount, what was in agreement with the filtration theory. Presented in this work experimental results were compared with the earlier ones dealing with dewatering of sediment after the BIRD centrifuge. The good agreement was achieved for suspension without flocculant and with the addition of Magnaflog 336 flocculant of concentration 1 g/m3 susp. Therefore it was proved that separation of dump suspension using pressure filtration is technically possible. Post-filtration cake (after drying up) can be used for energetic purposes, filtrate (characterized by very good clarity) can be turned back to circulation, while the flocculant dosage may be decreased from about 3.2 to 2 g/m3 susp.
- Źródło:
-
Rocznik Ochrona Środowiska; 2008, Tom 10; 301-318
1506-218X - Pojawia się w:
- Rocznik Ochrona Środowiska
- Dostawca treści:
- Biblioteka Nauki