Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Kidybiński, A." wg kryterium: Autor


Wyświetlanie 1-10 z 10
Tytuł:
Pole dynamicznego wytężenia skał stropowych wyrobiska korytarzowego po wstrząsie górotworu
The field of dynamie effort of roof strata of a roadway resulted from induced mining tremor occurrence
Autorzy:
Kidybiński, A.
Powiązania:
https://bibliotekanauki.pl/articles/340612.pdf
Data publikacji:
2007
Wydawca:
Główny Instytut Górnictwa
Tematy:
wyrobisko korytarzowe
wstrząsy
górotwór
skała stropowa
dog heading
rock mass
roof strata
stress
Opis:
W artykule omówiono - na podstawie modelowania w skali 1:1 metodą cząstkową - zmienne parametry pola wytężenia górotworu stropowego nad wyrobiskiem korytarzowym w obudowie ŁP9 po wstrząsie górotworu, takie jak prędkość i kierunek chwilowych przemieszczeń, naprężenia dynamiczne, udział objętości zaangażowanej w ruchy poślizgowe (SF), makroporowatość oraz gradienty prędkości ruchu cząstek w kierunku pionowym i poziomym. Omówiono przebieg sumarycznej energii kinetycznej modelu w pełnym cyklu jego pracy i podano energię kinetyczną symulowanych na modelu wstrząsów stropowych. Zrealizowane badania modelowe tworzą podstawy do prognozowania dynamicznych obciążeń obudowy wyrobisk korytarzowych podczas wstrząsów górotworu.
Parameters of roadway's roof strata dynamic effort are analysed as based on PFC2D (Particle Flow Code) modelling and namely velocity and direction of particle displacement, dynamic stress, sliding fraction (SF), changing porosity and (x,y) gradient of particle displacement velocities. Complete kinetic energy of the model in a full cycle of static/dynamic loading is also analysed as dependent of tremor's kinetic energy induced to the roof strata. Fundamentals for possible forecasting of yielding arch type of steel supports dynamic loads are presented as a result of these investigations.
Źródło:
Prace Naukowe GIG. Górnictwo i Środowisko / Główny Instytut Górnictwa; 2007, 2; 19-33
1643-7608
Pojawia się w:
Prace Naukowe GIG. Górnictwo i Środowisko / Główny Instytut Górnictwa
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zagrożenie tąpaniami w górnictwie światowym -rozpoznawanie i zapobieganie
Rockburst hazard in the world mining industry - recognition and prevention methods
Autorzy:
Kidybiński, A.
Powiązania:
https://bibliotekanauki.pl/articles/340621.pdf
Data publikacji:
2003
Wydawca:
Główny Instytut Górnictwa
Tematy:
tąpania
sejsmiczność
monitoring
obudowa
seismicity
monitoring system
rockburst
Opis:
Tąpania występują w kopalniach położonych na pięciu kontynentach, a mianowicie w Europie (Polska, Czechy, Niemcy, Francja i Słowenia), Azji (Rosja, Indie, Chiny), Ameryce (USA, Kanada, Chile), Afryce (RPA) oraz Australii (Nowa Południowa Waha, Queensland i zachodnia Australia). Aktywność sejsmiczna górotworu i tąpania są zjawiskami powszechnymi w górnictwie światowym i występują wszędzie tam, gdzie wysokie naprężenia w skorupie ziemskiej i znaczna wytrzymałość skał prowadzą do ich dynamicznego niszczenia. Aktywność sejsmiczna górotworu oraz zagrożenie tąpaniami są ogólnie przewidywalne na podstawie badania własności mechanicznych skał i pomiarów naprężeń w górotworze, mogą być także skutecznie monitorowane przy zastosowaniu regionalnej sieci sejsmometrów, lokalnego układu odbiorników sejsmoakustycznych (geofonów), wierceń testowych w złożu przed frontem eksploatacji, pomiarów prędkości osiadania stropu zasadniczego i innych metod Szczególnie przydatne są metody lokalizacji położenia stref występowania wysokich naprężeń w górotworze, a mianowicie tomografia sejsmiczna oraz sejsmologiczna tomografia pasywna. W wielu zagłębiach górniczych występowanie tąpań miało swój początek po przekroczeniu pewnej, charakterystycznej dla skał tego zagłębia, głębokości eksploatacji. W przypadku skał osadowych formacji węglonośnych, pomimo występowania węgla nawet na wielkich głębokościach, nigdzie nie udało się wydobywać go poniżej poziomu około 1500 m, co ma bezpośredni związek ze skrajnie wysokim nasileniem tąpań na tej głębokości. Współcześnie działające w skorupie ziemskiej siły tektoniczne nie mają istotnego wpływu na występowanie tąpań, nawet w obszarach, gdzie naprężenie poziome kilkakrotnie przewyższa składową grawitacyjną (wschodnia Australia, Anglia). Sposób eksploatacji złoża i kierowania stropem ma silny wpływ na częstość występowania oraz energię tąpań. Powszechnie stwierdza się korzystny wpływ łagodnego i ograniczonego opuszczania stropu (podsadzka, upodatnione filary resztkowe) na ograniczenie zagrożenia tąpaniami. Na podstawie ostatnich badań stwierdzono korzystny wpływ regularnego, całotygodniowego postępu frontu eksploatacji na ograniczenie liczby i energii wstrząsów sejsmicznych górotworu. Najbardziej powszechnym sposobem monitorowania zagrożenia tąpaniami są rejestracje lokalizacji i energii źródeł wstrząsów sejsmicznych w regionalnych bądź lokalnych sieciach sejsmologicznych. Analiza struktury naruszonego górotworu na tej podstawie uwarunkowana jest jednak należytą dokładnością wyznaczenia lokalizacji pionowej źródeł - co często nie jest możliwe w sieciach płaskich, związanych ze złożami osadowymi. Sieci sejsmiczne należy utrzymywać przez wiele lat po zakończeniu eksploatacji złoża w danym rejonie - ze względu na sejsmiczną aktywność poeksploatacyjną i konieczność dysponowania materiałem dowodowym w przypadku procesów sądowych o odszkodowanie z tytułu szkód wyrządzonych wstrząsami Wśród metod aktywnej profilaktyki tąpaniowej częstością stosowania wyróżniają się najtańsze metody odprężania robotami strzałowymi, o często niekontrolowanych skutkach w górotworze. Na szerokie upowszechnienie zasługują natomiast nowoczesne technologie inżynierii stropów, szczególnie ich ukierunkowane hydrauliczne szczelinowanie. W przeciwieństwie do kopalń rud metali, w górnictwie węglowym często niedoceniana jest rola obudowy wyrobisk korytarzowych - jako środka zapobiegającego niszczącym skutkom tąpań. Do najbardziej zalecanych sposobów unikania wypadków związanych z tąpaniami w tych wyrobiskach należy zaliczyć przykotwianie odrzwi obudowy łukowej do górotworu oraz zamiana obudowy odrzwiowej na kotwiową - co sprawdziło się wielokrotnie, szczególnie w kopalniach węglowych w USA oraz Francji.
Rockbursts (or coalbumps) are occurring in underground mines of five continents and namely in Europe (Poland, Czech Republic, Germany, France and Slovenia), Asia (Russia, India and China), America (USA, Canada and Chile), Africa (Republic of South Africa) and Australia (New South Wales, Queensland and Western Australia). Seismic activity of rock masses and rockbursts are therefore common phenomena and they are appearing everywhere when high stresses in the earthcrust as well as considerable strength of rocks are leading to their dynamic destruction. Generally speaking, seismicity of rock stratą and rockbursts are predictable on the basis of testing mechanical properties of rocks and stress measurements and may be therefore monitored by using regional networks of seismometers, local systems of microseismic detectors (geophones), test drillings (with measuring unit drill cuttings volume) in seams being worked ahead of mining faces, measuring of roof sag gradients in time and other methods. Seismic tomography and 'seismologic passive tomography are most useful because they can precisely locate high stress concentration zones. In several mining districts rockbursts occurring was preceded by trespassing by mining activity of certain characteristic for local conditions value of mining depth. For coal bearing sedimentary rocks for example never mining was possible below 1500 m level, although coal seams may occur even at lower horizons and this was caused by extremely high frequency of rockbursts occurrence at great depth. On the other hand contemporary tectonic forces in the earth crust do not have significant effect on rockbursts occurrence even in areas where horizontal stress component exceeds several times vertical stress such as eastern Australia and G. Britain. Mining system however and roof control method both have crucial effect on frequency and energy of occurring rockbursts. It has been found that limited and quiet roof subsidence due to backfilling or remnant pillars left has beneficial effect on numbers of rockbursts occurring. The latest research works have shown that regular advances of mining extraction fronts over a week also reduce number and energy of seismic events occurring. The most popular method of monitoring seismic and rockburst hazard is to record locations and energy of seismic events through both regional and local seismic networks. Accuracy of rock mass structure analyses based on these records are highly dependent however on precision of vertical positioning of sources, which is rarely satisfactory in horizontal mining layouts due to horizontal network structure. Seismic networks should be maintained long time after closing the mines due to postmining seismicity which extends over several years and may cause damage to structures being a subject of claims. Among methods of reducing rockburst hazard those less costly are usually prefered such as destressing by blasting, which is hard to control concerning its effect on rock masses. It is advisable therefore to more widely apply newly worked-out technologies of roof strata engineering and particularly directional hydraulic fracturing. As contrary to metal ore mines in coal mining often the role of rockbolting is underevaluated in reducing the risk of roof and rib failure. It is advised to fix steel arches to adjacent rocks using resin bolts and to change generally support system in coal mines from steel arches in longwall gates and other roadways to rockbolting which proved to be successful in the USA and France in preventing accidents caused by rockbursts and roof falls.
Źródło:
Prace Naukowe GIG. Górnictwo i Środowisko / Główny Instytut Górnictwa; 2003, 1; 5-35
1643-7608
Pojawia się w:
Prace Naukowe GIG. Górnictwo i Środowisko / Główny Instytut Górnictwa
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Strefy stateczności górotworu stropowego wyrobiska korytarzowego przy obciążeniu statyczno-dynamicznym
Roof stability zones of longwall gateroad at joint static and dynamic load
Autorzy:
Kidybiński, A.
Powiązania:
https://bibliotekanauki.pl/articles/340743.pdf
Data publikacji:
2008
Wydawca:
Główny Instytut Górnictwa
Tematy:
stateczność górotworu
wyrobiska korytarzowe
skały stropowe
soil stability
dog headings
roof rocks
Opis:
W artykule omówiono strefowy układ stateczności jednorodnych skał stropowych wyrobiska korytarzowego w czasie wypełniania się bryłami skalnymi przestrzeni między stropnicą a obrysem wyrobiska, następnie obciążenia statycznego - związanego z ruchem skał wyżej leżących oraz obciążenia dynamicznego - zaistniałego wskutek wystąpienia wstrząsu stropowego. Przeanalizowano wartości parametrów stateczności, występujących w trzech strefach wysokościowych stropu, których granice poziome są określone maksymalną amplitudą przyśpieszenia drgań pionowych oraz poziomych stropu podczas wstrząsów górotworu - co determinuje formę uszkodzenia stropu w poszczególnych strefach. Analizowano zmiany makroporowatości górotworu, procentowego udziału ruchów poślizgowych, naprężenia normalnego (poziomego i pionowego) oraz ścinającego, a także pionowego obciążenia obudowy i jej elementów - w czasie cyklu obciążenia obejmującego etapy: ewolucji kontaktu, obciążenia statycznego oraz wstrząsu. Badania zrealizowano metodą modelowania numerycznego w skali 1:1 za pomocą techniki spoistych modeli cząstkowych {Bonded Particle Model) dla wyrobiska z obudową LP9V25, przy' użyciu programu opracowanego przez autora artykułu w kodzie PFC2D. Stanowił}' one część większego projektu badaw-czo-rozwojowego MNiSW pt. "Klasyfikacja stateczności górotworu przy obciążeniach statyczno--dynamicznych wraz z metodą i instrukcją doboru stalooszczędnej obudowy wyrobisk korytarzowych w aktywnych sejsmicznie obszarach Górnośląskiego Zagłębia Węglowego".
In the paper, a zone system was discussed of stability of homogeneous roof rocks of a gateroad during self-filling the space between roof bar and outline of excavation with rock blocks, and then during the static load connected with the movement of higher lying rocks, as well as the dynamic load arising as a result of occurrence of roof tremor. Values of stability parameters were analysed, occurring in three heights' zones of roof, which horizontal borders are defined by maximal amplitude of acceleration of perpendicular as well as horizontal vibrations of the roof during bumps, what determines the form of roof damage in individual zones. Changes of rockmass macroporosity were analysed, proportional part of slip motions, normal stress (horizontal and vertical) and tangential, as well as perpendicular load of support and its elements during the time cycle of load including the following stages: development of contact, static load and the bump. Researches were realized with a numeric modeling method in scale 1:1 with the help of bonded particle models technique for excavation with LP9V25 support, with the use of program developed in code PFC2D by the author of present paper. They were part of larger research-development project of Ministry of Science and Higher Education, titled "Classification of rockmass stability at static-dynamic loads together with method and instruction of selection steel saving support of gateroads in seismically active areas of Upper-Silesian Coal Basin".
Źródło:
Prace Naukowe GIG. Górnictwo i Środowisko / Główny Instytut Górnictwa; 2008, 2; 37-50
1643-7608
Pojawia się w:
Prace Naukowe GIG. Górnictwo i Środowisko / Główny Instytut Górnictwa
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zmiany gęstości węgla przyprzodkowej strefy pokładu - przed oraz podczas wyrzutu gazu i skał
Changes in coal density of at-forehead seam zone before or during gas and rock outburst
Autorzy:
Kidybiński, A.
Powiązania:
https://bibliotekanauki.pl/articles/340973.pdf
Data publikacji:
2009
Wydawca:
Główny Instytut Górnictwa
Tematy:
wyrzut skał
wyrzut gazów
górnictwo węgla kamiennego
zagrożenia górnicze
gęstość węgla
metoda spoistych modeli cząstkowych
metoda BPM
rock outburst
gas outburst
hard coal mining
mining hazards
coal density
bonded particle models
Opis:
W artykule, na podstawie modelowania w skali 1:1 metodą spoistych modeli cząstkowych (BPM), omówiono zmiany makroporowatości w kręgach pomiarowych o średnicy 3,5 m, położonych kolejno od czoła przodka wyrobiska korytarzowego w czasie drążenia, o wysokości 3,5 m, do odległości 17 m od przodka w głąb calizny pokładu. Stwierdzono, że w strefie wgłębnej (7-17 m od czoła przodka) następuje systematyczne zmniejszanie się makroporowatości (wzrost gęstości) - do około 7% w stosunku do wartości pierwotnej w okresie bezpośrednio poprzedzającym dynamiczną część wyrzutu, po czym we wszystkich kręgach badanego odcinka pokładu następuje w przybliżeniu jednakowy wzrost mikroporowatości (zmniejszenie się gęstości) związane ze stopniowym rozpadem calizny pod wpływem ciśnienia gazu wolnego oraz sił wynikających z szybkiej desorpcji metanu z węgla. Zjawisko przejściowego wzrostu gęstości węgla w strefie pozaprzodkowej jest tłumaczone przez autora - przedostawaniem się do tego rejonu pokładu silnie sprężonego gazu szczelinowego.
In this article, on the basis of modeling in the scale of 1:1, making use of the method of bonded particle models, changes in macro porosity in measurement circles of 3,5 m in diameter have been found. The circles have been situated in turn from the working face of the dog heading during its driving, the headroom of 3,5 m, up to the distance of 17 m from the working face deep inside the body of coal. It has been stated that in the inside-zone (7-17 m form the working face) the decrease in macro porosity appears (increase in density) - up to about 7% in relation to its initial value in the period of directly preceding the dynamic part of the outburst. After that in all circles of the tested seam part appears approximately similar increase in macro porosity (decrease in density) related to gradual decomposition of coal under the influence of free gas pressure and the strengths forces due to quick desorption if methane from coal. The phenomenon of temporary coal density increase in off-forehead zone is explained by the author as a result of strongly pressured slotted gas penetration to this part of the seam.
Źródło:
Prace Naukowe GIG. Górnictwo i Środowisko / Główny Instytut Górnictwa; 2009, 2; 21-32
1643-7608
Pojawia się w:
Prace Naukowe GIG. Górnictwo i Środowisko / Główny Instytut Górnictwa
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Geotechniczne aspekty adaptacji wyrobisk likwidowanych kopalń węgla na podziemne magazyny gazu
Geotechnical aspects of adapting openings of a closed coal mine into underground gas storage facility (UGSF)
Autorzy:
Kidybiński, A.
Powiązania:
https://bibliotekanauki.pl/articles/340174.pdf
Data publikacji:
2004
Wydawca:
Główny Instytut Górnictwa
Tematy:
podziemny magazyn gazu
PMG
goetechnika
wytrzymałość skał
underground gas storage facility
UGSF
goetechnic
strength of rocks
Opis:
W związku z przewidywanym wzrostem zapotrzebowania na gaz w Europie i w Polsce do 2020 roku, a także zamierzoną likwidacją niektórych kopalń węgla w Górnośląskim Zagłębiu Węglowym - rozpatruje się możliwość wykorzystania wyrobisk niektórych z nich na podziemne magazyny gazu. Pozytywne doświadczenia w tym zakresie uzyskano w Belgii (byłe kopalnie Anderlues oraz Peronnes-lez-Binche), a także USA (kopalnia Leyden k. Denver), gdzie - po adaptacji - kopalnie węgla służą przez wiele lat jako magazyny gazu energetycznego dla pobliskich aglomeracji miejskich. Doświadczenia zdobyte podczas budowy zbiorników gazu w tych kopalniach wskazują, że ważną rolę w powodzeniu tego rodzaju przedsięwzięcia odgrywają następujące czynniki geotechniczne: istnienie nieprzepuszczalnego nadkładu, zapobiegającego ucieczkom gazu ku powierzchni, oddalenie kopalni od kopalń sąsiednich - co zapobiega ucieczkom gazu w kierunku poziomym, nieznaczne dopływy wód podziemnych do kopalni - ze względu na oszczędność kosztów stałego odpompowywania wody ze zbiornika, kontrolowane zasięgi strefy spękania skał nad wyeksploatowanymi pokładami węgla, znaczne ilości węgla pozostawionego w złożu (filary, zroby) - co zwiększa pojemność gazową zbiornika ze względu na znaczną sorbowalność metanu przez węgiel, a także obecność w sąsiedztwie wyrobisk porowatych formacji skalnych - co zwiększa elastyczność zbiornika przez oddziaływanie na gaz ciśnienia wód podziemnych. Wszystkie wymienione czynniki zależą w znacznej mierze od właściwości geotechnicznych górotworu otaczającego wyrobiska takich, jak: wytrzymałość i odkształcalność górotworu otaczającego zbiornik, szczelinowatość skał i drożność gazowa szczelin, a także rozmakalność i porowatość skał. Cechy te mogą być określane metodami laboratoryjnymi lub polowymi, znanymi z zastosowań w geomechanice górniczej oraz budownictwie wodnym i tunelowym. W artykule omówiono szczegółowo następujące metody badań przydatne przy rozpoznawaniu przydatności danej kopalni na podziemny zbiornik gazu oraz projektowaniu i wykonawstwie zbiornika: - badanie wytrzymałości skał na ściskanie (w laboratorium), - badanie odkształcalności skał (modułów odkształcenia i sprężystości) w laboratorium, - badanie rozmakalności skał (przy zanurzeniu jednorazowym oraz wielokrotnym), - analizę kierunków i zagęszczenia szczelin w górotworze, - badanie drożności gazowej szczelin metodą aerometryczną, - badanie polowe odkształcalności górotworu w układzie płaskim, - badanie polowe odkształcalności górotworu w układzie radialnym oraz sposób uwzględniania wpływu czynnika skali wielkości na parametry geotechniczne skał i górotwo-ru. Omówiono także krajowe doświadczenia z prac adaptacyjnych części wyrobisk byłej kopalni węgla "Nowa Ruda" (pole "Słupiec") na podziemny magazyn gazu oraz wynikające z tych doświadczeń wnioski. We wnioskach podkreślono, że wymienione powyżej (i omówione w artykule) metody badawcze mogą być przydatne przede wszystkim przy projektowaniu wysokociśnieniowych podziem-nych zbiorników gazu i paliw płynnych, natomiast przy rozpatrywaniu możliwości budowy niskociśnieniowego zbiornika gazu w wyrobiskach likwidowanej kopalni węgla pierwszorzędne znaczenie mają czynniki makrogeotechniczne takie, jak: właściwości nieprzepuszczalnego nadkładu, stosunki hydrogeologiczne i dopływy wody do wyrobisk, tektonika złoża w aspekcie ewentualnych połączeń z sąsiednimi kopalniami lub powierzchnią, łączna objętość pustek (wyrobisk) oraz zrobów pozostawionych w kopalni, masa węgla pozostawionego w złożu i jego właściwości sorpcyjne (oraz szybkość desorpcji), możliwości oraz spodziewane koszty likwidacji wszystkich szybów i otworów wiertniczych z powierzchni, a także obecność w sąsiedztwie wyrobisk wodonośnych skał porowatych. Niezależnie od zagadnień geotechnicznych, ważnym czynnikiem warunkującym powodzenie przedsięwzięcia jest bezpośrednie zaangażowanie w proces projektowania i budowy zbiornika jego przyszłego właściciela i użytkownika.
In connection with expected growth of gas consumption both in Europe and in Poland up to the year 2020, as well as closing foreseen of several coal mines in Upper Silesian Coal Basin - it is considered to utilize underground openings of some of these mines as UGSFs. Successful experiences in this area are known from Belgium (former coal mines Anderlues and Peronnes-lez-Binche) and the USA (mine Leyden near Denver), where - after adaptation works - these mines are used since many years as the UGSFs, serving local municipal agglomerations. Experience coming from adaptation of these mines into gas storage facilities show the importance of such geotechnical factors as existence of non-permeable overburden which prevents leaking of gas to the surface, far distance from adjacent mines (if they exist) - which prevents horizontal leakages, limited water inflow to the mine - to constrain the costs of permanent water pumping, controlled vertical range of roof failure over coal seams mined, volume and methane sorption/desorption capacity of coal left in a mine (pillars, goabs) - to increase storage volume and porosity of rocks surrounding excavations - which decides about flexibility of a reservoir. All elements mentioned depend on geotechnical features of rock masses surrounding excavations such as the strength and deformability, jointing of rocks and gas conductivity through fractures as well as slakeability and porosity of rocks. These properties may be investigated with both laboratory and field methods known from mining geomechanics practice as well as hydro-engineering and tunneling. Following methods applicable in assessing of coal mine usefulness as a potential UGSF and designing process, are discussed in a paper: - uniaxial compressive strength test of rock in the laboratory, - deformability of rock (moduli of elasticity and deformation) in the laboratory, - slakeability of rocks (both in single and multiple submerging), - rock jointing analysis (both directions and density of joints), - gas conductivity of fractures tested with an aerometric probe, - field testing of deformability of rock mass in a flat system, - field testing of deformability of rock mass in a radial system, as well as the role of scale effect on geotechnical parameters of rocks and rock masses. The Polish experiences were also discussed coming from adaptation works of part of former Nowa Ruda coal mine (section Słupiec) into UGSF and conclusions are drawn from these experiences. In final conclusions it was pointed out that methods mentioned above and described in a paper are useful primarily in designing high pressure reservoirs while with low pressure ones macro-geotechnical features of rock masses seem to be of prime significance, such as properties of non-permeable overburden, hydrogeological relations and water inflow to the mine, tectonics and its linkage aspect to adjacent mines and to the surface, masses of coal left in a mine, its sorption capacity and desorption rate, costs expected of shafts closure and old boreholes sealing as well as porous aquifiers presence close to the openings. Apart from geotechnical problems a direct engagement in mine transforming into UGSF of its future owner or/and operator is considered to be very important condition for the success of the enterprise.
Źródło:
Prace Naukowe GIG. Górnictwo i Środowisko / Główny Instytut Górnictwa; 2004, 2; 37-63
1643-7608
Pojawia się w:
Prace Naukowe GIG. Górnictwo i Środowisko / Główny Instytut Górnictwa
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zmiany energetyczne przodkowej strefy pokładu bezpośrednio przed wyrzutem oraz podczas wyrzutu węgla i metanu
Energy alternations in the heading zone just before initation as well as in the course of an outburst
Autorzy:
Kidybiński, A.
Powiązania:
https://bibliotekanauki.pl/articles/349001.pdf
Data publikacji:
2010
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
model BPM
wyrzuty węgla i metanu
energia wewnętrzna
gęstość węgla
BPM model
coal & methane outburst
inner energy
coal's density
Opis:
Przedstawiono wyniki modelowania w skali 1: 1 wyrzutów węgla i metanu w przodku wyrobiska korytarzowego - numeryczną metodą spoistych modeli cząstkowych (ang. Bonded Particle Model), ze szczególnym uwzględnieniem zmian energetycznych zachodzących w przodku węglowym bezpośrednio przed wyrzutem i w jego trakcie. Badania przeprowadzono na czterech typach ośrodka odpowiadających węglowi od bardzo dużej wytrzymałości (A), aż do węgli najsłabszych (D). Uzasadniono potrzebę kontynuowania badań na większych modelach oraz podjęcia starań na rzecz opracowania geofizyczno-inżynierskiej metody wczesnego wykrywania zagrożenia wyrzutem węgla i gazu w przodku drążonego wyrobiska korytarzowego w pokładzie węglowym - w oparciu o zdalny pomiar zmian gęstości węgla w pokładzie.
Results of computer modeling in 1:1 scale of coal and methane outbursts in the roadway driven heading zone were presented - using the Bonded Particle Model method with particular attention paid to energy alternations having place in the heading zone just before initiation as well as in the course of an outburst. Four types of modeling material were used as related to coal properties from this of very high compressive strength (A) down to the weakest coal (D). The necessity of further investigations is argued on longer BPM scale models as well as geophysical measurements applying in the mines in order to detect high coal's density zone within the seam occurring near the heading just before coal and gas outburst initiation.
Źródło:
Górnictwo i Geoinżynieria; 2010, 34, 2; 359-369
1732-6702
Pojawia się w:
Górnictwo i Geoinżynieria
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Modelowanie zjawisk gazogeodynamicznych w pokładach jednorodnych i z uskokiem
Modeling of gas-geodynamic phenomena in homogeneous seams and seams with fault
Autorzy:
Patyńska, R.
Kidybiński, A.
Powiązania:
https://bibliotekanauki.pl/articles/349436.pdf
Data publikacji:
2008
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
wyrzuty gazu i węgla
modelowanie procesów
gas and coal outburst
modelling of outburst process
Opis:
W artykule przedstawiono w zarysie stan wiedzy na temat wyrzutów węgla i gazu w wybranych podziemnych kopalniach węgla w Polsce i świecie. Wskazano na możliwości metod numerycznych w zakresie modelowania przebiegu tego procesu oraz bliższego rozpoznania jego mechanizmu pod kątem prognozy i profilaktyki zagrożenia w kopalni. Omówiono wyniki badań na modelu cząstkowym przebiegu i parametrów wyrzutu fazy stałej (węgiel) i gazowej (metan) biorących udział w wyrzucie węgla i gazu dla pokładu jednorodnego oraz zaburzonego. Opisano rozwój procesu wyrzutowego (jego etapy) oraz sformułowano wnioski.
In the article a brief review of state-of-the-art on coal and gas outbursts in underground coal mines is presented both in Poland and elsewhere. Opportunity is indicated to apply the numerical method for modeling outbursts in order to recognize their mechanism and make possible the hazard forecasting to the mines and thus to prevent the accidents connected with outbursts. Research results of an outburst of coal and methane with particle flow model are discussed and in particular - the role of solid phase and gas for homogeneous and heterogeneous seam. The development (phases) of outburts process are discussed and final conclusions are given.
Źródło:
Górnictwo i Geoinżynieria; 2008, 32, 1; 273-284
1732-6702
Pojawia się w:
Górnictwo i Geoinżynieria
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Numeryczne modelowanie dynamiki udaru skał w obudowę, spowodowanego wstrząsem sejsmicznym lub tąpnięciem
Numerical simulation of rock impact dynamics on mine supports during seismic tremor or rockburst
Autorzy:
Kidybiński, A.
Nierobisz, A.
Powiązania:
https://bibliotekanauki.pl/articles/340226.pdf
Data publikacji:
2004
Wydawca:
Główny Instytut Górnictwa
Tematy:
dynamika górotworu
symulacja dynamiki skał
tąpania
rock dynamic
numerical simulation of rock dynamics
crump
Opis:
W miarę wyczerpywania się zasobów węgla na płytszych poziomach eksploatacja złóż węgla w kopalniach Górnośląskiego Zagłębia Węglowego przebiega na coraz większych głębokościach, a także - rozpoczęcie eksploatacji złoża naruszonego eksploatacją pokładów wyżej lub niżej położonych lub zaangażowanych tektonicznie - powoduje zwiększenie nasilenia wstrząsów sejsmicznych w górotworze i pogarszanie się warunków eksploatacji oraz bezpieczeństwa. Szczególnie dotyczy to kopalń, w których są eksploatowane pokłady warstw siodłowych (grupa 500) - znanych z dużej skłonności górotworu do tąpań oraz występowania w stropach pokładów węgla grubych i mocnych ławic piaskowców, które są źródłem silnych wstrząsów sejsmicznych. W celu bliższego rozpoznania wpływu wstrząsów na zagrożenie zawałem stropu wyrobiska koryta-rzowego znajdującego się w zasięgu oddziaływania wstrząsu sejsmicznego, powstawania zagrożenia tąpnięciem ociosowym lub spągowym, a przede wszystkim - wpływu wstrząsów na zachowanie się i niezbędne zagęszczenie obudowy kotwiowej - podjęto badania symulacyjne, wykorzystując istniejące programy komputerowe GIG ze zmodyfikowaną częścią dotyczącą naprężeń dynamicznych powstających w górotworze pod wpływem wstrząsów sejsmicznych. Dobrano mianowicie odpowiednie programy, takie jak: CHODNIK - symulujący zasięg odspojenia stropu nad wyrobiskiem i wirtualny zawał stropu, TĄPANIA 1 - symulujący stopień zagrożenia i dynamikę tąpnięcia ociosowego wraz z ewentual-nym naruszeniem spągu oraz program FLOBURST - symulujący stopień zagrożenia i dynamikę tąpnięcia spągowego oraz przeprowa-dzono ogółem 114 cykli symulacji. W wyniku przeprowadzonych badań określono: wpływ magnitudy i odległości ogniska wstrząsu od analizowanego wyrobiska korytarzowego - na dodatkowe naprężenia dynamiczne w skałach stropowych, optymalną długość kotwi jako funkcję magnitudy (modelowano od zera do 3,4) oraz odległości hipocentralnej wstrząsu (modelowano przedział 50-400 m), warunki zaistnienia zagrożenia tąpnięciem ociosowym oraz oczekiwanej energii udaru masy skał spągowych - przy małym, średnim i dużym zagrożeniu wstrząsem sejsmicznym. Określono także optymalną długość i zagęszczenie kotwi w zależności od magnitudy i odległości ogniska wstrząsu sejsmicznego górotworu od analizowanego wyrobiska, dla typowej szerokości wyrobiska wynoszącej 6,0 m. Praca stanowi pierwszy (teoretyczny) etap projektu celowego pt. "Systemy kotwienia dla wyrobisk korytarzowych zagrożonych wstrząsami" - dofinansowanego przez Ministerstwo Nauki i Informatyzacji, zaś podjętego do wdrożenia przez Kompanię Węglową S.A. z poligonem doświadczalnym w kopalni "Jankowice".
Still growing depth of coal mining in Upper Silesian Coal Basin which is caused by exhaustion of reserves at shallow levels as well as working the seams being disturbed by mining at lower or upper horizons and seams tectonically engaged - are the reasons of ever growing frequency and energy of seismic events occurring in the area. Seismic tremors are badly affecting both mine safety of work and conditions for mining activity. In particular, this refers to those mines which are undertaking extractive works in anticline strata (group of seams numbered from 500 up) - as known from high bursting propensity indices of coal and thick layers of strong sandstones in the roof of coal seams, which are the sources of seismic events. Research work was undertaken to find closer relations between seismic events occurring in mines and roof strata falling hazard as well as rib bursting phenomena and dynamic floor heaving hazard at longwall entries. But first of all an effect of seismicity on behavior and parameters required for rock bolting systems were in the scope of investigations which have been done by numerical simulation with existing CMI computer programs by modifying of their dynamic stress related segment. Three programs were selected, namely: CHODNIK - simulating vertical range of roof fracturing over the roadway and virtual roof strata failure, TĄPANIA 1 - simulating a risk and dynamics of rib born coal burst as well as floor strata failure extent, FLOBURST - simulating a risk and the dynamics of floor strata heaving. Then, 114 runs of these programs were executed and as a result following was received: effect of magnitude and focal distance on dynamic stresses generated within roof strata, optimum length of roof bolts as a function of magnitude (from zero to 3.4 simulated) and focal distance of seismic event (from 50m to 400m simulated), conditions essential for rib born coal burst occurrence and energy of floor burst expected - for small, medium and high intensity of seismic event within nearby rock masses. Optimum length and spacing of roof bolts as dependent from magnitude and focal distance of seismic event was also received for typical rectangular cross section of an opening 6.0 meters wide. The work discussed is a first (theoretical) stage of a targeted research project "Rock bolting systems for mine roadways subjected to seismic tremors hazard" - sponsored by the Polish Ministry of Science and Informatics and ordered at the Central Mining Institute by Coal Company S.A. with experiments scheduled at Jankowice Colliery.
Źródło:
Prace Naukowe GIG. Górnictwo i Środowisko / Główny Instytut Górnictwa; 2004, 4; 35-64
1643-7608
Pojawia się w:
Prace Naukowe GIG. Górnictwo i Środowisko / Główny Instytut Górnictwa
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Ewolucja tematyki badawczej Głównego Instytutu Górnictwa w latach 1945-2004
Evolution of the Central Mining Institute subject area over the years 1945-2004
Autorzy:
Dubiński, J.
Kidybiński, A.
Powiązania:
https://bibliotekanauki.pl/articles/340659.pdf
Data publikacji:
2005
Wydawca:
Główny Instytut Górnictwa
Tematy:
Główny Instytut Górnictwa
górnictwo
GIG
Central Mining Institute
mining
GIG - history
Źródło:
Prace Naukowe GIG. Górnictwo i Środowisko / Główny Instytut Górnictwa; 2005, 4; 21-40
1643-7608
Pojawia się w:
Prace Naukowe GIG. Górnictwo i Środowisko / Główny Instytut Górnictwa
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wpływ czynników naturalnych masywu skalnego na jego wytrzymałość określoną metodami penetrometryczną i laboratoryjną
Impact of natural features of the rockmass on its strength determined by penetrometric and laboratory methods
Autorzy:
Bukowska, M.
Kidybiński, A.
Powiązania:
https://bibliotekanauki.pl/articles/340708.pdf
Data publikacji:
2002
Wydawca:
Główny Instytut Górnictwa
Tematy:
wytrzymałość skał
otwór wiertniczy
wilgotność skały
szczelina
wytrzymałość na ściskanie
rock strength
borehole
rock humidity
fissure
compressive strength
Opis:
W latach siedemdziesiątych w Głównym Instytucie Górnictwa opracowano penetrometryczną metodę badania wytrzymałości skał w otworach wiertniczych wykonywanych na ogół w stropie wyrobisk górniczych. Wyniki badań wytrzymałościowych skał tworzących strop wyrobisk, uzyskiwane tą metodą, stanowią podstawę do oceny jego stateczności i doboru optymalnej obudowy podporowej lub kotwiowej. Ze względu na to, że do obliczania stateczności górotworu używa się standardowych wyników badań laboratoryjnych, takich jak: wytrzymałość na jednoosiowe ściskanie (Rc, MPa), wytrzymałość na rozciąganie (Rr, MPa), moduł odkształcenia (Eo, MPa) itp., konieczne było znalezienie korelacji między wynikami tych badań a oporem (krytycznym ciśnieniem) penetracji, będącym wynikiem badań penetrometrycznych. Dokonano tego sposobem przybliżonym, bez szczegółowej analizy wilgotności i szczelinowatości skał i otrzymano współczynnik przeliczeniowy krytycznego ciśnienia penetracji na wytrzymałość na ściskanie wynoszący 1,2 i współczynnik przeliczeniowy krytycznego ciśnienia penetracji na wytrzymałość na rozciąganie równy 0,077. Stosowanie tych współczynników przez wiele lat wykazało, że w szeregu przypadkach zachodzą znaczne odchylenia uzyskanych w ten sposób wyników od wyników badań laboratoryjnych. Wobec powyższego przeprowadzono powtórne próby korelacji, w których uwzględniono zmienność litologiczną skał, ich wilgotność oraz stan spękania. Dla skał płonnych oraz dla węgli pokładów GZW obliczono liczbę a = Rc ps/pm,, wyrażającą stosunek wytrzymałości na ściskanie do maksymalnego ciśnienia penetrometrycznego oraz liczbę b = Rr ps/pm będącą stosunkiem wytrzymałości na rozciąganie do niszczącego ciśnienia penetrometrycznego. Rozrzut wartości liczby a dla wszystkich przebadanych skał wraz z wartościami średnimi przedstawiono na rysunku 1. Wartości liczby a zależą od rodzaju skały i wynoszą 0,7-1,9, średnio dla całej populacji przebadanych próbek skalnych a = 1,3. Zmienność wartości liczby a dla poszczególnych odmian litologicznych z tych rejonów badań, gdzie pomiary ciśnień niszczących nie były obniżone oddziaływaniem różnych czynników naturalnych, w tym spękań i powierzchni osłabienia, przedstawiono na rysunku 2. Mieszczą się one w przedziale wartości 0,72-1,18. Zróżnicowanie wartości liczby b wyrażającej stosunek laboratoryjnej wytrzymałości na rozciąganie do niszczącego ciśnienia penetrometrycznego in situ zilustrowano na rysunku 5. Wartości liczby b zależą od rodzaju skały i zawierają się w przedziale wartości 0,037-0,073. Badania laboratoryjne wytrzymałości skał na ściskanie wykonano na próbach w stanie powietrzno--suchym (ps) oraz, po raz pierwszy w badaniach geomechanicznych, w stanie nasycenia kapilarnego (nk). Spośród badanych typów skał najwyższy współczynnik korelacji pomiędzy wytrzymałością na ściskanie określoną w stanie powietrzno-suchym i w stanie nasycenia kapilarnego wykazały piaskowce (rys. 4). Spadek wytrzymałości na ściskanie w stanie nasycenia kapilarnego w stosunku do wytrzymałości w stanie powietrzno-suchym wyniósł od 20 do 40%. Z uwagi na różnice w wilgotności naturalnej górotworu i próbek laboratoryjnych, zalecono przeprowadzanie badań laboratoryjnych piaskowców w stanie nasycenia kapilarnego nawiązującego do wilgotności naturalnej skał i do nasycenia skał wodą w strefie przyotworowej, do którego dochodzi w strefie oddziaływania płuczki wiertniczej, a badania mułowców, iłowców i węgli w stanie powietrzno-suchym, który w przybliżeniu odpowiada wilgotności naturalnej po odsączeniu z górotworu wody wolnej. Różnice w wytrzymałości próbek laboratoryjnych oraz ciśnień krytycznych iglicy penetrometru otworowego mogą również wynikać z oddziaływania tzw. czynnika skali, czyli różnicy wielkości (objętości) obciążanego w badaniach obszaru skały. Autorzy przeprowadzili obliczenia wpływu defektów strukturalnych na różnice wytrzymałości według teorii Weibulla i Hoeka/Browna, na podstawie których stwierdzili, że wzrost wymiaru próbki z 5 mm (średnica iglicy) do 50 mm (wymiar próbki laboratoryjnej) powoduje spadek wytrzymałości skal średnio od 33,7% (wg Hoeka/Browna) do 57,7% (wg Weibulla) i tylko w nieznacznym stopniu jest uzależniony od rodzaju skały. Wyższe wartości pro w stosunku do Rc tych samych skał mogą być interpretowane jako skutek odmiennego stanu naprężeń w badaniach laboratoryjnych (jednoosiowe ściskanie) oraz próbie penetrometrycznej (wciskanie tłocznika w półprzestrzeń materialną), jakkolwiek przy małej grubości warstwy obciążanej tłoczkiem penetrometru wpływ tego czynnika jest zapewne niewielki. Wpływ spękań i powierzchni osłabienia obserwowany był w przypadku piaskowców i iłowców. Badaniami stwierdzono spadek niszczącego ciśnienia penetrometrycznego w stosunku do wytrzymałości na ściskanie o 23-66%. Mając na uwadze fakt, że w czasie badań wykonywanych penetrometrem otworowym szczegółowe zidentyfikowanie odmiany litologicznej w otworze na określonej głębokości jest często bardzo trudne, można zalecić stosowanie ogólnego współczynnika przeliczeniowego a o wartości 1,0, a współczynnika b o wartości 0,055.
In the 1970s at the Central Mining Institute a penetrometric testing method was worked out, related to rock strength in boreholes, made mostly within roof strata of mine openings. Results of strength tests on rocks obtained when using this method made it possible to assess roof stability and to select optimum standing supports or roof bolting system. Having in mind that for rock mass stability calculations standard laboratory test results are used, such as uniaxial compressive strength (Rc, MPa), tensile strength (Rr, MPa) and deformation modulus (Eo, MPa) it was necessary to find correlation between results of these tests and penetration resistance (ultimate pressure) resulting from penetrometer tests. This was carried out by means of an approximate method, without detailed analysis of rock humidity and fracturing, and coefficient of ultimate pressure conversion to compressive strength, valued 1.2, was obtained (0.077 for tensile strength). The use of these coefficients throughout the years has shown that in some cases deviations of results obtained in this manner from the results of laboratory tests were considerable. New correlation tests were carried out therefore taking account of lithologic variety of rocks, their humidity and fracturing status. For barren rocks and coal from Silesian seams the number a = Rc ps/pm has been calculated, where Rc ps is compressive strength and pm is maximum penetrometric pressure, as well as number b = Rr ps/pm, where Rr ps is tensile strength. The scatter of a for all tested rocks along with the average values were presented in Fig. 1. The value of a depends on type of rock and amounts 0.7-1.9, (1.3 being an awerage). Variation of a for lithologic species from those areas where pressure measurements were not affected by structural factor such as fissures and cleats is presented in Fig. 2 and ranges from 0.72 to 1.18. The scatter of b is shown in Fig. 5 where various rocks differ from 0.037 to 0.073. Laboratory tests of compressive strength were carried out on samples in air-dry state (ps) and in capillary saturation state (nk). Among tested types of rocks sandstones have the highest correlation coefficient between compressive strength determined in air-dry state and capillary saturation (Fig. 4). Drop of compressive strength in capillary saturation state in relation to strength in air-dry state amounted from 20 to 40 per cent. Considering differences between natural humidity of rockmass and laboratory samples it is recommended to carry out laboratory tests on sandstones in capillary saturation state but tests on mudstones, shales, and coal in air-dry state. Differences regarding strength of laboratory samples and ultimate pressures at borehole penetrometer plunger can also result from scale factor, i.e. difference between magnitude (volume) of rock area loaded. Authors performed calculations related to effect of structural defects on strength according to Weibul's and Hoek/Brown's theories. It was found that increasing of sample size from 5 mm (plunger diameter) to 50 mm (laboratory sample size) causes strength drop of 33.7% (Hoek/Brown) to 57.7% (Weibull) of laboratory value and do not depend on rock type. Higher p" in relation to Rc of the same rocks can be interpreted as a result of different stress state in laboratory tests (uniaxial compression) and penetrometric test (piston element penetration) however in case of low thickness of layer loaded effect of this factor is insignificant. The influence of fissures and fractures was observed in case of sandstones and shales, as a drop of penetrometer pressure in relation to laboratory tests by 23-66 per cent. Finally, having in mind that during penetrometer testing lithological layers in borehole are hard to detect it is recommended to use coversion coefficient a of 1.0 but coefficient b of 0.055 value.
Źródło:
Prace Naukowe GIG. Górnictwo i Środowisko / Główny Instytut Górnictwa; 2002, 1; 35-46
1643-7608
Pojawia się w:
Prace Naukowe GIG. Górnictwo i Środowisko / Główny Instytut Górnictwa
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-10 z 10

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies