- Tytuł:
- Trees whose 2-domination subdivision number is 2
- Autorzy:
-
Atapour, M.
Sheikholeslami, S. M.
Khodkar, A. - Powiązania:
- https://bibliotekanauki.pl/articles/254847.pdf
- Data publikacji:
- 2012
- Wydawca:
- Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
- Tematy:
-
2-dominating set
2-domination number
2-domination subdivision numbe - Opis:
- A set S of vertices in a graph G = (V,E) is a 2-dominating set if every vertex of V \ S is adjacent to at least two vertices of S. The 2-domination number of a graph G, denoted by γ2(G), is the minimum size of a 2-dominating set of G. The 2-domination subdivision number sdγ2 (G) is the minimum number of edges that must be subdivided (each edge in G can be subdivided at most once) in order to increase the 2-domination number. The authors have recently proved that for any tree T of order at least 3, 1 ≤ sdγ2 (T ) ≤ 2. In this paper we provide a constructive characterization of the trees whose 2-domination subdivision number is 2.
- Źródło:
-
Opuscula Mathematica; 2012, 32, 3; 423-437
1232-9274
2300-6919 - Pojawia się w:
- Opuscula Mathematica
- Dostawca treści:
- Biblioteka Nauki