- Tytuł:
-
Pattern Classification of Fabric Defects Using a Probabilistic Neural Network and Its Hardware Implementation using the Field Programmable Gate Array System
Klasyfikacja rodzaju defektów tkanin za pomocą probabilistycznej sztucznej sieci neuronowej oraz za pomocą systemu FPGA - Autorzy:
-
Hasnat, A.
Ghosh, A.
Khatun, A.
Halder, S. - Powiązania:
- https://bibliotekanauki.pl/articles/234369.pdf
- Data publikacji:
- 2017
- Wydawca:
- Sieć Badawcza Łukasiewicz - Instytut Biopolimerów i Włókien Chemicznych
- Tematy:
-
classification
fabric defect
field programmable gate array (FPGA)
radial basis function
probabilistic neural network
klasyfikacja wad tkanin
probabilistyczna sieć neuronowa - Opis:
-
This study proposes a fabric defect classification system using a Probabilistic Neural Network (PNN) and its hardware implementation using a Field Programmable Gate Arrays (FPGA) based system. The PNN classifier achieves an accuracy of 98 ± 2% for the test data set, whereas the FPGA based hardware system of the PNN classifier realises about 94±2% testing accuracy. The FPGA system operates as fast as 50.777 MHz, corresponding to a clock period of 19.694 ns.
W pracy zaprezentowano system klasyfikacji wad tkanin przy użyciu probabilistycznej sieci neuronowej (PNN) i przy zastosowaniu systemu Field Programmable Gate Array (FPGA). PNN pozwala na osiągnięcie dokładności 98 ± 2% dla zbioru danych testowych, podczas gdy system FPGA pozwala na osiągnięcie dokładności około 94 ± 2%. System FPGA pracuje przy częstotliwości 50,777 MHz, co odpowiada 19,694 ns. - Źródło:
-
Fibres & Textiles in Eastern Europe; 2017, 1 (121); 42-48
1230-3666
2300-7354 - Pojawia się w:
- Fibres & Textiles in Eastern Europe
- Dostawca treści:
- Biblioteka Nauki