Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Kerboua, Adlen" wg kryterium: Autor


Wyświetlanie 1-2 z 2
Tytuł:
Recurrent neural network optimization for wind turbine condition prognosis
Autorzy:
Kerboua, Adlen
Kelaiaia, Ridha
Powiązania:
https://bibliotekanauki.pl/articles/2096205.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Polskie Towarzystwo Diagnostyki Technicznej PAN
Tematy:
forecasting
recurrent network
optimization
hyperparameters
loss
prognozowanie
optymalizacja
sieci rekurencyjne
strata
Opis:
This research focuses on employing Recurrent Neural Networks (RNN) to prognosis a wind turbine operation’s health from collected vibration time series data, by using several memory cell variations, including Long Short Time Memory (LSTM), Bilateral LSTM (BiLSTM), and Gated Recurrent Unit (GRU), which are integrated into various architectures. We tune the training hyperparameters as well as the adapted depth and recurrent cell number of the proposed networks to obtain the most accurate predictions. Tuning those parameters is a hard task and depends widely on the experience of the designer. This can be resolved by integrating the training process in a Bayesian optimization loop where the loss is considered as the objective function to minimize. The obtained results show the effectiveness of the proposed method, which generates more accurate recurrent models with a more accurate prognosis of the operating state of the wind turbine than those generated using trivial training parameters.
Źródło:
Diagnostyka; 2022, 23, 3; art. no. 2022301
1641-6414
2449-5220
Pojawia się w:
Diagnostyka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Application of artificial neural networks for the prediction of the service conditions of an elastohydrodynamic EHL contact in the presence of solid pollutant
Autorzy:
Mattallah, Sabrina
Kelaiaia, Ridha
Louahem M’Sabah, Hanane
Kerboua, Adlen
Powiązania:
https://bibliotekanauki.pl/articles/27313819.pdf
Data publikacji:
2024
Wydawca:
Polska Akademia Nauk. Polskie Towarzystwo Diagnostyki Technicznej PAN
Tematy:
elastohydrodynamic contact
solid pollution
artificial neural network
wear
Opis:
Lubricated mechanical mechanisms operate under service conditions influenced by several environmental parameters, and their life times may be threatened due to inappropriate use or by the presence of solid contaminants. The objective of this work is to study the effect of three operating parameters, namely: rotational speed , load and kinematic viscosity in the presence of three sizes of solid contaminants , on the degradation of an EHL contact, to predict the ranges of effects that may lead to the damage of the contacting surfaces. In our investigation, anexperimental design of nine trials is used to combine four factors with three levels each to accomplish the experimental investigation. Artificial neural network regression and the desirability function were used for the interpretation and modelling of the responses, whichare: wear , arithmetic mean height , total profile height and maximum profile height . From these methods we observed that the sand grain sizes have a significant impact on the wear and the roughness , but that viscosity has the primary influence on the variation of the roughnesses and . We also found that the quality of the predicted models is very good, with overall determination coefficients of 2 learning = 0.9985 and 2 validation = 0.9996. Several levels of degradation depending on the operating conditions are predicted using the desirability function.
Źródło:
Diagnostyka; 2024, 25, 1; art. no. 2024107
1641-6414
2449-5220
Pojawia się w:
Diagnostyka
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies