Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Kemnitz, Arnfried" wg kryterium: Autor


Wyświetlanie 1-10 z 10
Tytuł:
Edge colorings and total colorings of integer distance graphs
Autorzy:
Kemnitz, Arnfried
Marangio, Massimiliano
Powiązania:
https://bibliotekanauki.pl/articles/743555.pdf
Data publikacji:
2002
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
integer distance graph
chromatic number
choice number
chromatic index
choice index
total chromatic number
total choice number
Opis:
An integer distance graph is a graph G(D) with the set Z of integers as vertex set and two vertices u,v ∈ Z are adjacent if and only if |u-v| ∈ D where the distance set D is a subset of the positive integers N. In this note we determine the chromatic index, the choice index, the total chromatic number and the total choice number of all integer distance graphs, and the choice number of special integer distance graphs.
Źródło:
Discussiones Mathematicae Graph Theory; 2002, 22, 1; 149-158
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Graphs with rainbow connection number two
Autorzy:
Kemnitz, Arnfried
Schiermeyer, Ingo
Powiązania:
https://bibliotekanauki.pl/articles/743883.pdf
Data publikacji:
2011
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
edge colouring
rainbow colouring
rainbow connection
Opis:
An edge-coloured graph G is rainbow connected if any two vertices are connected by a path whose edges have distinct colours. The rainbow connection number of a connected graph G, denoted rc(G), is the smallest number of colours that are needed in order to make G rainbow connected. In this paper we prove that rc(G) = 2 for every connected graph G of order n and size m, where $\binom{n-1}{2} + 1 ≤ m ≤ \binom{n}{2} - 1$. We also characterize graphs with rainbow connection number two and large clique number.
Źródło:
Discussiones Mathematicae Graph Theory; 2011, 31, 2; 313-320
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On the ρ-Edge Stability Number of Graphs
Autorzy:
Kemnitz, Arnfried
Marangio, Massimiliano
Powiązania:
https://bibliotekanauki.pl/articles/32361738.pdf
Data publikacji:
2022-02-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
edge stability number
line stability
invariant
chromatic edge stability index
chromatic index
edge coloring
Opis:
For an arbitrary invariant $ \rho(G) $ of a graph $G$ the $ \rho $-edge stability number $ es_\rho (G) $ is the minimum number of edges of $G$ whose removal results in a graph $ H \subseteq G $ with $ \rho (H) \ne \rho (G) $ or with $ E(H) = \emptyset $. In the first part of this paper we give some general lower and upper bounds for the $ \rho $-edge stability number. In the second part we study the $ \chi^' $-edge stability number of graphs, where $ \chi^' = \chi^' (G) $ is the chromatic index of $G$. We prove some general results for the so-called chromatic edge stability index $ es_{ \chi^′ } (G) $ and determine $ es_{ \chi^′ } (G) $ exactly for specific classes of graphs.
Źródło:
Discussiones Mathematicae Graph Theory; 2022, 42, 1; 249-262
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Fractional (\( \mathcal{P} , \mathcal{Q} \))-Total List Colorings of Graphs
Autorzy:
Kemnitz, Arnfried
Mihók, Peter
Voigt, Margit
Powiązania:
https://bibliotekanauki.pl/articles/30146708.pdf
Data publikacji:
2013-03-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
graph property
total coloring
(P,Q)-total coloring
fractional coloring
fractional (P,Q)-total chromatic number
circular coloring
circular (P,Q)-total chromatic number
list coloring
(P,Q)-total (a
b)-list colorings
Opis:
Let $ r, s \in \mathbb{N}$, $r \ge s$, and \( \mathcal{P} \) and \( \mathcal{Q} \) be two additive and hereditary graph properties. A \( (P,Q) \)-total $(r, s)$-coloring of a graph $G = (V,E)$ is a coloring of the vertices and edges of $G$ by $s$-element subsets of $ \mathbb{Z}_r$ such that for each color $i$, $0 \le i \le r − 1$, the vertices colored by subsets containing $i$ induce a subgraph of $G$ with property \( \mathcal{P} \), the edges colored by subsets containing $i$ induce a subgraph of $G$ with property \( \mathcal{Q} \), and color sets of incident vertices and edges are disjoint. The fractional \( (\mathcal{P}, \mathcal{Q})\)-total chromatic number $ \chi_{f,P,Q}^{''}(G)$ of $G$ is defined as the infimum of all ratios $r//s$ such that $G$ has a \( ( \mathcal{P}, \mathcal{Q})\)-total $(r, s)$-coloring. A \( ( \mathcal{P}, \mathcal{Q} \)-total independent set $ T = V_T \cup E_T \subseteq V \cup E$ is the union of a set $V_T$ of vertices and a set $E_T$ of edges of $G$ such that for the graphs induced by the sets $V_T$ and $E_T$ it holds that \( G[ V_T ] \in \mathcal{ P } \), \( G[ E_T ] \in \mathcal{Q} \), and $ G[ V_T ] $ and $ G[ E_T ] $ are disjoint. Let \( T_{ \mathcal{P} , \mathcal{Q} } \) be the set of all \( (\mathcal{P} ,\mathcal{Q})\)-total independent sets of $G$. Let $L(x)$ be a set of admissible colors for every element $ x \in V \cup E $. The graph $G$ is called \( (\mathcal{P} , \mathcal{Q}) \)-total $(a, b)$-list colorable if for each list assignment $L$ with $|L(x)| = a$ for all $x \in V \cup E$ it is possible to choose a subset $ C(x) \subseteq L(x)$ with $|C(x)| = b$ for all $ x \in V \cup E$ such that the set $ T_i $ which is defined by $ T_i = {x \in V \cup E : i \in C(x) } $ belongs to \( T_{ \mathcal{P},\mathcal{Q}}\) for every color $i$. The \( (\mathcal{P}, \mathcal{Q})\)- choice ratio \( \text{chr}_{\mathcal{P},\mathcal{Q}}(G)\) of $G$ is defined as the infimum of all ratios $a//b$ such that $G$ is \( (\mathcal{P},\mathcal{Q})\)-total $(a, b)$-list colorable. We give a direct proof of \( \chi_{ f,\mathcal{P},\mathcal{Q} }^{ \prime \prime } (G) = \text{chr}_{ \mathcal{P} ,\mathcal{Q} }(G)\) for all simple graphs $G$ and we present for some properties \( \mathcal{P} \) and \( \mathcal{Q} \) new bounds for the \( (\mathcal{P}, \mathcal{Q})\)-total chromatic number and for the \((\mathcal{P},\mathcal{Q})\)-choice ratio of a graph $G$.
Źródło:
Discussiones Mathematicae Graph Theory; 2013, 33, 1; 167-179
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Sum List Edge Colorings of Graphs
Autorzy:
Kemnitz, Arnfried
Marangio, Massimiliano
Voigt, Margit
Powiązania:
https://bibliotekanauki.pl/articles/31340809.pdf
Data publikacji:
2016-08-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
sum list edge coloring
sum choice index
sum list coloring
sum choice number
choice function
line graph
Opis:
Let $ G = (V,E) $ be a simple graph and for every edge $ \mathcal{e} \in E $ let $ L(e) $ be a set (list) of available colors. The graph $ G $ is called $L$-edge colorable if there is a proper edge coloring $ c $ of $ G $ with $ c(\mathcal{e} ) \in L( \mathcal{e} ) $ for all $ \mathcal{e} \in E $. A function $ f : E \rightarrow \mathbb{N} $ is called an edge choice function of $G$ and $G$ is said to be $f$-edge choosable if $G$ is $L$-edge colorable for every list assignment $L$ with $ |L( \mathcal{e} )| = f( \mathcal{e} ) $ for all $ \mathcal{e} \in E $. Set $ \text{size}(f) = \Sigma_{ \mathcal{e} \in E } f(e) $ and define the sum choice index $ \chi_{sc}^' (G) $ as the minimum of $ \text{size} (f) $ over all edge choice functions $f$ of $G$. There exists a greedy coloring of the edges of $G$ which leads to the upper bound $ \chi_{sc}^′ (G) \le 1/2 \Sigma_{ v \in V } d(v)^2 $. A graph is called sec-greedy if its sum choice index equals this upper bound. We present some general results on the sum choice index of graphs including a lower bound and we determine this index for several classes of graphs. Moreover, we present classes of sec-greedy graphs as well as all such graphs of order at most 5.
Źródło:
Discussiones Mathematicae Graph Theory; 2016, 36, 3; 709-722
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Generalized Sum List Colorings of Graphs
Autorzy:
Kemnitz, Arnfried
Marangio, Massimiliano
Voigt, Margit
Powiązania:
https://bibliotekanauki.pl/articles/31343297.pdf
Data publikacji:
2019-08-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
sum list coloring
sum choice number
generalized sum list coloring
additive hereditary graph property
Opis:
A (graph) property \( \mathcal{P} \) is a class of simple finite graphs closed under isomorphisms. In this paper we consider generalizations of sum list colorings of graphs with respect to properties \( \mathcal{P} \). If to each vertex $v$ of a graph $G$ a list $L(v)$ of colors is assigned, then in an \( (L, \mathcal{P} ) \)-coloring of $G$ every vertex obtains a color from its list and the subgraphs of $G$ induced by vertices of the same color are always in \( \mathcal{P} \). The \( \mathcal{P} \)-sum choice number \( X_{sc}^\mathcal{P} (G) \) of $G$ is the minimum of the sum of all list sizes such that, for any assignment $L$ of lists of colors with the given sizes, there is always an \( (L, \mathcal{P} ) \)-coloring of $G$. We state some basic results on monotonicity, give upper bounds on the \( \mathcal{P} \)-sum choice number of arbitrary graphs for several properties, and determine the \( \mathcal{P} \)-sum choice number of specific classes of graphs, namely, of all complete graphs, stars, paths, cycles, and all graphs of order at most 4.
Źródło:
Discussiones Mathematicae Graph Theory; 2019, 39, 3; 689-703
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Improved Sufficient Conditions for Hamiltonian Properties
Autorzy:
Bode, Jens-P.
Fricke, Anika
Kemnitz, Arnfried
Powiązania:
https://bibliotekanauki.pl/articles/31339476.pdf
Data publikacji:
2015-05-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
Hamiltonian
traceable
Hamiltonian-connected
Opis:
In 1980 Bondy [2] proved that a (k+s)-connected graph of order n ≥ 3 is traceable (s = −1) or Hamiltonian (s = 0) or Hamiltonian-connected (s = 1) if the degree sum of every set of k+1 pairwise nonadjacent vertices is at least ((k+1)(n+s−1)+1)/2. It is shown in [1] that one can allow exceptional (k+1)-sets violating this condition and still implying the considered Hamiltonian property. In this note we generalize this result for s = −1 and s = 0 and graphs that fulfill a certain connectivity condition.
Źródło:
Discussiones Mathematicae Graph Theory; 2015, 35, 2; 329-334
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Rainbow Connection In Sparse Graphs
Autorzy:
Kemnitz, Arnfried
Przybyło, Jakub
Schiermeyer, Ingo
Woźniak, Mariusz
Powiązania:
https://bibliotekanauki.pl/articles/30146690.pdf
Data publikacji:
2013-03-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
rainbow-connected graph
rainbow colouring
rainbow connection number
Opis:
An edge-coloured connected graph $G = (V,E)$ is called rainbow-connected if each pair of distinct vertices of $G$ is connected by a path whose edges have distinct colours. The rainbow connection number of $G$, denoted by $ \text{rc}(G)$, is the minimum number of colours such that $G$ is rainbow-connected. In this paper we prove that $ \text{rc}(G) \le k $ if $ |V (G)| = n $ and \( |E(G)| \ge \binom{n-k+1}{2} + k -1 \) for all integers $n$ and $k$ with $n − 6 \le k \le n − 3 $. We also show that this bound is tight.
Źródło:
Discussiones Mathematicae Graph Theory; 2013, 33, 1; 181-192
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Generalized total colorings of graphs
Autorzy:
Borowiecki, Mieczysław
Kemnitz, Arnfried
Marangio, Massimiliano
Mihók, Peter
Powiązania:
https://bibliotekanauki.pl/articles/743865.pdf
Data publikacji:
2011
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
hereditary properties
generalized total colorings
paths
cycles
complete graphs
Opis:
An additive hereditary property of graphs is a class of simple graphs which is closed under unions, subgraphs and isomorphism. Let P and Q be additive hereditary properties of graphs. A (P,Q)-total coloring of a simple graph G is a coloring of the vertices V(G) and edges E(G) of G such that for each color i the vertices colored by i induce a subgraph of property P, the edges colored by i induce a subgraph of property Q and incident vertices and edges obtain different colors. In this paper we present some general basic results on (P,Q)-total colorings. We determine the (P,Q)-total chromatic number of paths and cycles and, for specific properties, of complete graphs. Moreover, we prove a compactness theorem for (P,Q)-total colorings.
Źródło:
Discussiones Mathematicae Graph Theory; 2011, 31, 2; 209-222
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Generalized Fractional and Circular Total Colorings of Graphs
Autorzy:
Kemnitz, Arnfried
Marangio, Massimiliano
Mihók, Peter
Oravcová, Janka
Soták, Roman
Powiązania:
https://bibliotekanauki.pl/articles/31339338.pdf
Data publikacji:
2015-08-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
graph property
(P,Q)-total coloring
circular coloring
fractional coloring
fractional (P,Q)-total chromatic number
circular (P,Q)- total chromatic number
Opis:
Let \( \mathcal{P} \) and \( \mathcal{Q} \) be additive and hereditary graph properties, $ r, s \in \mathbb{N}$, $ r \ge s $, and $ [\mathbb{Z}_r]^s $ be the set of all s-element subsets of $\mathbb{Z}_r $. An ($r$, $s$)-fractional (\( \mathcal{P} \),\( \mathcal{Q} \))-total coloring of $G$ is an assignment $ h : V (G) \cup E(G) \rightarrow [\mathbb{Z}_r]^s $ such that for each $ i \in \mathbb{Z}_r $ the following holds: the vertices of $G$ whose color sets contain color $i$ induce a subgraph of $G$ with property \( \mathcal{P} \), edges with color sets containing color $i$ induce a subgraph of $G$ with property \( \mathcal{Q} \), and the color sets of incident vertices and edges are disjoint. If each vertex and edge of $G$ is colored with a set of $s$ consecutive elements of $ \mathbb{Z}_r $ we obtain an ($r$, $s$)-circular (\( \mathcal{P} \),\( \mathcal{Q} \))-total coloring of $G$. In this paper we present basic results on ($r$, $s$)-fractional/circular (\( \mathcal{P} \),\( \mathcal{Q} \))-total colorings. We introduce the fractional and circular (\( \mathcal{P} \),\( \mathcal{Q}\))-total chromatic number of a graph and we determine this number for complete graphs and some classes of additive and hereditary properties.
Źródło:
Discussiones Mathematicae Graph Theory; 2015, 35, 3; 517-532
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-10 z 10

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies