Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Kejna, M." wg kryterium: Autor


Tytuł:
Przebieg roczny ciśnienia atmosferycznego na Antarktydzie
Annual course of the atmospheric pressure on the Antarctic
Autorzy:
Kejna, M.
Powiązania:
https://bibliotekanauki.pl/articles/260645.pdf
Data publikacji:
2005
Wydawca:
Stowarzyszenie Klimatologów Polskich
Tematy:
ciśnienie atmosferyczne
Antarktyda
cyrkulacja atmosferyczna
Antarctic
atmospheric pressure
atmospheric circulation
Opis:
W artykule przedstawiono zmienność przestrzenną przebiegu rocznego ciśnienia atmosferycznego na Antarktydzie. Stwierdzono dwa typy przebiegów rocznych ciśnienia. Na wybrzeżu występuje przebieg charaktery-zujący się półroczną oscylacją, z maksymalnymi wartościami w sezonie letnim i zimowym oraz najniższymi w przejścio-wych porach roku. We wnętrzu kontynentu najwyższe ciśnienie występuje latem, a najniższe w chłodnej połowie roku. Największe amplitudy roczne ciśnienia występują we wnętrzu kontynentu. W ostatnich dwóch dekadach XX wieku zaznaczyły się istotne zmiany w przebiegu rocznym ciśnienia atmosferycznego.
At the polar latitudes of the Southern Hemisphere a circulation cell functions which is connected with the strong baric wedge feature of the atmosphere occurring between the Antarctic anticyclone and a very deep circumpolar trough by the Antarctic coastline. The circulation system in the Antarctic region shows seasonal variability called Southern Annular Mode (SAM). In the cold season the tropospheric exchange of air masses strengthens due to the increase of the katabatic winds? speed. The relocation of air masses from over Antarctica to its peripheries has an influence on the annual course of the atmospheric pressure. In the elaboration mean monthly air pressure values were taken into account from 106 Antarctic stations from the beginning of measurements to 2000. On the basis of these data the mean annual course of the atmospheric pressure has been counted as well as the yearly pressure range. Annual courses from two periods: 1958-1980 and 1981-2000 were also compared. Over the Antarctic the annual course of the atmospheric pressure is complex. At the costal part of the continent there are two maxima (in summer and in winter) and two minima in the transient seasons. This course is called semi-annual oscillation (SAO) in the literature. However this phenomenon shows certain regional specifics. On the Antarctic Peninsula and South Orkney Islands the winter maximum is more distinct, while minima are shifted to February and November. In the inland the winter maximum decreases with the distance from the coast and at stations situated in the highest parts of the glacial plateau the highest pressure values occur in summer and distinctly lower ones in winter. At some inland stations a slight increase of the pressure can be observed in the middle of winter what refers to the thermal coreless winters occurring frequently in this region. The annual range of the atmospheric pressure decreases from the coast (15-7 hPa) to the interior of the continent, where it reaches values above 20 hPa. During the last two decades of the 20th century significant changes took place in the annual courses of the pressure in comparison to the years 1958-1980. On the South Orkney Islands and the Antarctic Peninsula the pressure increased in summer and in autumn, while in winter distinctly decreased. At the remaining part of the Antarctic coast pressure decrease occurred in every seasons, and in the Weddell Sea region the autumn and spring minimum significantly deepened. At the majority of the stations the annual amplitudes of the atmospheric pressure decreased after 1980. These changes contributed to the disturbances in the functioning of the Antarctic climate system. On the Antarctic Peninsula the air temperature increased, while at many stations in the Eastern Antarctic considerable cooling occurred.
Źródło:
Problemy Klimatologii Polarnej; 2005, 15; 7-16
1234-0715
Pojawia się w:
Problemy Klimatologii Polarnej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Przebieg roczny temperatury powietrza na Antarktydzie
Annual course of air temperature on the Antarctic
Autorzy:
Kejna, M.
Powiązania:
https://bibliotekanauki.pl/articles/260895.pdf
Data publikacji:
2002
Wydawca:
Stowarzyszenie Klimatologów Polskich
Tematy:
Antarktyda
temperatury powietrza
Antarctic
air temperature
Opis:
On the Antarctic the annual course of air temperature shows a considerable spatial differentiation. Over the inland the course of temperature during the year is conditioned by insolation-radiational factors. On the coast the role of circulation factors connected with the advection of air masses from above the ocean or from the interior of the continent. In the paper mean monthly air temperatures from 56 stations making standard meteorological observations and from 38 automatic weather stations (AWS) have been used. On the Antarctic there types of annual air temperature courses can be distinguished: Oceanic - characterised by positive air temperatures in the summer season with the highest temperatures in February and by mild temperatures in the winter months (to -10°C). As a result of the ocean influence spring is considerable colder then autumn. The annual amplitudes are small (to 10-15°C). This type occurs on the western coast of the Antarctic Peninsula and on the subantarctic islands. Continental - with very low air temperatures. The warmest month is December with temperatures below -30°C in the interior of the continent. In winter the lowest mean monthly temperatures reach -70°C. The temperature frequently increases in the middle of winter; this phenomenon is called kernlose winter. The annual amplitude of air temperature is not high and in the interior its value reaches 30-35°C. The continental type includes the whole Antarctic except the narrow coastal belt. Coastal - characterised by air temperature around 0°C in the summer period. The warmest month is January. The lowest temperatures occur in January (-30° do -40°C). The growth of temperature in spring delays the heat uptake for the melting of sea ice. The annual amplitude of the air temperature is quite high and exceeds 20°C. Due to the influence of circulation factors on the Antarctic the annual course of the air temperature shows a large variability from year to year.
Źródło:
Problemy Klimatologii Polarnej; 2002, 12; 5-19
1234-0715
Pojawia się w:
Problemy Klimatologii Polarnej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zmiany trendu temperatury powietrza na Antarktydzie w latach 1958-2000
Change of air temperature range on the Antarctic in the years 1958-2000
Autorzy:
Kejna, M.
Powiązania:
https://bibliotekanauki.pl/articles/260927.pdf
Data publikacji:
2003
Wydawca:
Stowarzyszenie Klimatologów Polskich
Tematy:
temperatury powietrza
Antarktyda
air temperature
Antarctic
Opis:
The progressive increase in the concentration of greenhouse gases in the atmosphere in consequence leads to the rise of the global air temperature. According to the III Report of IPCC (2001) from 1880 the mean temperature on the Earth has grown by 0.6°C ą0.2°C. The reaction of polar regions to the greenhouse effect is unknown. The Antarctic climate shows a considerably greater variability in comparison with the lower latitudes of the Southern Hemisphere. This is conditioned by interactions between the atmospheric circulation, the ocean, and the cryosphere. According to the scenarios of global greenhouse effect the temperature at the polar regions should grow by 3°C in summer and 4-5°C in winter. However, these model researches are not confirmed in reality. This shows that our knowledge concerning the functioning of climate system of the polar regions is insufficient. In the paper we have used monthly mean air temperature values for 21 stations being in operation on the Antarctic in the years 1958-2000 and for 34 stations making observations in the years 1981-2000. After checking the homogeneity of the series by the Alexandersson?s (1986) test we have counted the trends of air temperature. The average trend for annual and seasonal values were expressed by temperature change per 10 years. In the years 1958-2000 on the Antarctic the trend of the mean annual values of the air temperature shows great spatial differentiation. These differences are connected with the radiation balance depending on the variability of cloudiness and the albedo of the surface, and on the transformation of pressure fields and changes of the atmospheric circulation. Statistically significant (on 0.95 significance level) air temperature increase occurred on the western coast of the Antarctic Peninsula (for example Faraday 0.67°C/10 years) and at the stations Belgrano and McMurdo. A negative air temperature trend occurred on the South Pole (-0.21°C/10 years) and on the Droning Maud Land. The temperature changes in the region of the Antarctic Peninsula are correlated with the extension and surface of sea ice, especially in winter. There are considerable differences of air temperature trends on the Antarctic between the periods 1958-1980 and 1981-2000. The period 1958-1980 is characterized by an increase of air temperature, especially on the shore of continent (Casey 0.84°C/10 years, Faraday 0.76°C/10 years, Halley 0.69°C/10 years). The interior of the continent is distinguished by stability of weather conditions. Year-to-year temperature changes are smaller, then at the coast (the trend at the Amundsen-Scott station average 0.26°C/10 years). During the last years (1981-2000) significant changes took place in the tendency of air temperature on the Antarctic. In many regions of the Antarctic cooling began, on the cost of East Antarctica the temperature decreases, on the coasts of the Wilkes Land (Casey -0.82°C/10 years) and the Weddell Sea (Halley -1.13?C/10 years, Larsen Ice -0.89°C/10 years), especially in the autumn-winter period. In the interior of the continent also lower and lower temperatures occurred (Amundsen-Scott -0.42°C/10 years, Dome C -0.71°C/10 years). The cooling can be observed in all seasons, but it is the greatest in summer and autumn, when the decrease of solar radiation was observed in connection with the growing cloudiness. Vostok situated at the highest parts of ice dome does not show statistically significant trend. An increase of the temperature was observed in the interior of West Antarctica (Byrd 0.37°C/10 years). The warming rate of the climate became weaker on the Antarctic Peninsula (Faraday 0.56°C/10 years). The largest temperature changes occurred in the autumn-winter season when in the Antarctic Peninsula region the temperature increased, while in the interior and at the coast of East Antarctica considerably fell. Climate changes during the last 20 years of the 20th century showed the weakening of the warming rate on the Antarctic Peninsula and distinct cooling on the East Antarctica. The lack of warming, or even cooling, on the East Antarctica, is favourable to maintain the present climate system in this region. The increasing air temperature on the West Antarctic, especially on the Antarctic Peninsula caused many natural consequences. The ablation of glaciers clearly intensified, deglaciation takes place, glaciers retreat. The environmental changes lead to disturbances in the functioning of the Antarctic ecosystem.
Źródło:
Problemy Klimatologii Polarnej; 2003, 13; 7-26
1234-0715
Pojawia się w:
Problemy Klimatologii Polarnej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Amplituda dobowa temperatury powietrza na Antarktydzie
Diurnal air temperature range on the Antarctic
Autorzy:
Kejna, M.
Powiązania:
https://bibliotekanauki.pl/articles/260832.pdf
Data publikacji:
2004
Wydawca:
Stowarzyszenie Klimatologów Polskich
Tematy:
temperatury powietrza
Antarktyda
cyrkulacja atmosferyczna
air temperature
Antarctic
atmospheric circulation
Opis:
Diurnal air temperature ranges (DTR) have been counted based on the monthly mean values of the daily maximal and minimal air temperature from 23 Antarctic stations. DTR shows a considerable spatial differentiation on the Antarctic. The lowest DTR values (4-6°C) occur along the western coast of the Antarctic Peninsula and on the subantarctic islands. At the remaining coast of Antarctica the mean DTR vary from 6-7°C to 10°C at the stations situated on higher geographical latitude. In the Antarctic inlands the largest DTR values occur at the highest parts of glacier plateau (8-9°C), while on the South Pole they are distinctly smaller (6°C). In the annual course of DTR the following types have been distinguished: oceanic type at the western coast of the Antarctic Peninsula with small DTR in summer (2-4°C) and twice higher in winter; oceanic-continental type at the coast of Eastern Antarctic with large DTR during the whole year; continental-oceanic type with high DTR in summer and still higher (up to 13°C) in winter occurring at Western Antarctic and in the Weddell Sea basin; continental type characteristic for the interior of the continent with the highest DTR in summer (11-12°C) and smaller in winter; polar type with small DTR in summer (to 3°C) and considerable higher in winter (7-8°C). A decrease of DTR occurred on the Antarctic in regions characterized by increasing temperature in the second half of the 20th century, especially on the western coast of the Antarctic Peninsula, on the coast of Ross Sea and on the Queen Maud Land. The decrease in the DTR values was connected with the quicker increase of daily minimal air temperatures. On the other hand, in the regions where cooling was noted the DTR values increase (inlands of Eastern Antarctic and South Pole, and the Weddell Sea basin), mainly due to the fall in daily minimal air temperatures.
Źródło:
Problemy Klimatologii Polarnej; 2004, 14; 7-18
1234-0715
Pojawia się w:
Problemy Klimatologii Polarnej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Warunki meteorologiczne na Lodowcu Waldemara (NW Spitsbergen) w sezonie letnim 1999 roku
Meteorological conditions on the Waldemar Glacier (NW Spitsbergen) in summer season 1999
Autorzy:
Kejna, M.
Powiązania:
https://bibliotekanauki.pl/articles/260965.pdf
Data publikacji:
2001
Wydawca:
Stowarzyszenie Klimatologów Polskich
Tematy:
Lodowiec Waldemara
Spitsbergen
cyrkulacja atmosfery
Waldemar Glacier
atmospheric circulation
Opis:
The meteorological measurements were carried out on NW Spitsbergen on the Waldemar Glacier (surface 2.66 km2) in three points: ATA (133 m a.s.l., marginal zone), LW1 (130 m a.s.l., snout of glacier), LW2 (380 m a.s.l., firn part). The base station of Toruń Polar Expedition is situated on the north part of Kaffioyra (KH, 11 m a.s.l.), about 3 km away from glacier. The air temperature and relative air humidity were measured by termohigrographs in standard meteorological boxes, and precipitation by Hellmanns pluwiometer in the period 14.07-8.09.1999. The weather conditions on the Kaffiöyra region are determined by solar and circulation factors. In the summer season 1999 north and east advection of air masses dominated. The meteorological conditions on Waldemar Glacier are formed by the influence of two contrasting environments: the glacier and its moraine foreground. The mean air temperature in summer 1999 at the Kaffiöyra equaled 5.4°C and at the moraine of the Waldemar Glacier (ATA) 5.2°C. On the glacier the air temperature was much lower, and on the snout (LW1) was 4.5°C and decreases with the altitude (LW2 3.2°C) . The average gradient of air temperature between LW1 and LW2 stands was 0.53°C/100 m. Between the warmed up dark moraine ground (ATA) and the melted surface of the glacier a ?thermal jump? occurred (0.4°C on the distance 160 m). The highest maximum of air temperature at KH was 18.1°C, and on the Waldemar Glacier 16.4°C (LW1) and 16.5°C (LW2). The relative air humidity on Spitsbergen are formed under the influence of oceanic water and foehn phenomena. In summer season 1999 the mean relative air humidity was 84% at the Kaffioyra and increased with the altitude on the Waldemar Glacier (LW1 ? 86%, LW2 ?89%). In the period 21-07-31.08 at the Kaffioyra sums of the precipitation equaled 58.4 mm and on the glacier: 85.2 mm (133 m a.s.l.), 100,6 mm (233 m a.s.l.), 108.9 mm (380 m a.s.l.) and 131.8 mm (421 m a.s.l.). In summer season the meteorological conditions on the Waldemar Glacier show a large variability. It is a result of incoming air masses, warm from moraine foreground up the glacier and cool from the glacier plateau, from the interior of Spitsbergen.
Źródło:
Problemy Klimatologii Polarnej; 2001, 11; 55-65
1234-0715
Pojawia się w:
Problemy Klimatologii Polarnej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Warunki meteorologiczne na Kaffiöyrze (NW Spitsbergen) w okresie od 13 lipca do 9 września 1999 roku
Meteorological conditions at Kaffiöyra (Nw Spitsbergen) in the period 13.07 - 9.09.1999
Autorzy:
Kejna, M.
Powiązania:
https://bibliotekanauki.pl/articles/261063.pdf
Data publikacji:
2000
Wydawca:
Stowarzyszenie Klimatologów Polskich
Tematy:
pomiary meteorologiczne
Równinia Kaffiöyra
Spitsbergen
warunki meteorologiczne
Opis:
The meteorological investigations were carried out in the summer season of 1999 (from July 13 to September 9) during XVIIth, Polar Expeditions of Nicholas Copernicus University. Area, range and methodology of measurement were continuations of investigations made during the previous expeditions. The main meteorological observations were conducted in Polar Station of N. Copernicus University (φ = 78°41 'N, λ=1l°51 'E, h = 11.5 m a.s.l.), situated in northern part of the Kaffiöyra (NW Spitsbergen). Moreover on Waldemar Glacier were carried out registration of air temperature. air humidity and precipitations (3 stands). In the paper are presented the results of the base station. In summer 1999 the weather on Spitsbergen was governed by cyclones (52%) moved on the east from Iceland depression and anticyclone situated on Barents Sea (45%). Frequency of air masses advection from east and north was greater than during previous expeditions. At the second decade of July weather was very warm (maximum of air temperature 18.1 °C) and sunny (82.7 hours). The high temperatures occurred during foehn phenomena. The comparison between summer season 1999 and mean values from the years 1975-1999 in the common period (21.07-31.08) shows that this season was characterised by cloudiness (8.9) greater than mean many years' values, sunshine duration (150.1 hours), air humidity (85%) and wind velocity (3.8 m/s) below norm and air temperature (4.9°C) near mean many years’ values. In summer 1999 there weren 't frosty days and snow cover.
Źródło:
Problemy Klimatologii Polarnej; 2000, 10; 93-110
1234-0715
Pojawia się w:
Problemy Klimatologii Polarnej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Pokrywa śnieżna w rejonie Stacji H. Arctowskiego (Szetlandy Pd., Antarktyka) w latach 1978-1996
Snow cover in the vicinity of the Arctowski Station (South Shetland Islands, Antarctic) in the period 1978-1996
Autorzy:
Kejna, M.
Láska, K.
Powiązania:
https://bibliotekanauki.pl/articles/260999.pdf
Data publikacji:
1998
Wydawca:
Stowarzyszenie Klimatologów Polskich
Tematy:
Szetlandy Południowe
Antarktyka
Stacja Arctowskiego
pokrywa śnieżna
South Shetland Islands
Antarctic
Arctowski Station
snow cover
Opis:
Pokrywa śnieżna jest istotnym czynnikiem klimatotwórczym. Długość jej zalegania oraz jej miąższość wpływają również na wegetację roślinną i przebieg procesów peryglacjalnych w gruncie (Krajewski 1986; Kejna i Laska 1999b). W klimacie subantarktycznym pokrywa śnieżna tworzy się w warunkach ogromnej zmienności pogody. We wszystkich porach roku występują dodatnie i ujemne temperatury powietrza oraz stałe i ciekłe opady atmosferyczne. Silne wiatry przenoszą śnieg, znacznie modyfikując pokrywę śnieżną. Na Stacji H. Arctowskiego (Wyspa Króla Jerzego, Szetlandy Południowe) prowadzono systematyczne pomiary miąższości i czasu zalegania pokrywy śnieżnej w latach 1978-1990 oraz w 1992 i 1996 r. Jednak pokrywie śnieżnej poświęcono tylko niezbyt obszerne akapity w artykułach podsumowujących kolejne wyprawy, np. Nowosielski 1980; Kratke i Wielbińska 1981; Kowalski 1986; Kejna i Laska 1997. Zagadnienie to nie było poruszane nawet w opracowaniach o charakterze monografii klimatu tego obszaru, np. Marsz i Rakusa-Suszczewski 1986; Marsz i Styszyńska 2000. Badania nad zróżnicowaniem przestrzennym miąższości pokrywy śnieżnej w okolicach Stacji H. Arctowskiego oraz na Lodowcu Ekologii prowadzono jedynie w 1991 r. (Gonera i Rachlewicz 1997) oraz w 1996 r. (Caputa i in. 1997).
The snow cover was investigated at the Arctowski Station (King George Island, Antarctic) in the period 1978-1996. During the 20th Polish Antarctic Expedition in 1996 the snow cover was measured in 32 places on the Sile of Special Scientific Interest No. 8 in the vicinity of the Arctowski Station (King George Island, Antarctic). On the King George Island the snow cover can occur around the year. In the summer months the snow cover is unstable. On the average 230 days with snow cover occurred at the Arctowski Station. The permanent snow cover began at 7th May and ended at 23th November. The mean snow cover thickness in the years 1978-1996 was between 40 to 50 cm, but the maximum reached 131 cm in 1980. The accumulation of snow was disturbed by frequent midwinter thawing and snow drift. In 1996 at the Arctowski Station permanent snow cover was formed on 6 June and stayed till 31 October. It reached its maximal thickness, 73 cm in September. The snow cover on the SSSI No 8 area showed great spatial differentiation. This is the effect not only the different sums of precipitation, but also the redistribution of the snow by wind. On the nonglaciated area the biggest thickness of snow cover was measured in depressions, in the filled up valleys of streams and on the snow patches. Heights and mountain peaks are without snow because of the wind. On the Ecology Glacier in 1996 the thickness of snow cover increased with the altitude. The biggest thickness of snow cover (177 cm) was measured at 165 m above sea level. In summer the snow cover melts, on the glaciers the snow border runs from 150 to 300 m above sea level in dependence on the weather conditions. On the nonglaciated areas the snow stays until the middle of summer in the form of snow patches.
Źródło:
Problemy Klimatologii Polarnej; 1998, 8; 79-93
1234-0715
Pojawia się w:
Problemy Klimatologii Polarnej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Bilans radiacyjny w rejonie Kaffioyry (NW Spitsbergen) w sezonie letnim 2010 roku
Radiation balance in the Kaffioyra region (NW Spitsbergen) in the summer season 2010
Autorzy:
Kejna, M.
Przybylak, R.
Araźny, A.
Powiązania:
https://bibliotekanauki.pl/articles/260983.pdf
Data publikacji:
2011
Wydawca:
Stowarzyszenie Klimatologów Polskich
Tematy:
bilans radiacyjny
promieniowanie słoneczne
promieniowanie atmosfery
promieniowanie ziemi
Spitsbergen
Kaffioyra
radiation balance
solar radiation
atmospheric radiation
long-wave radiation
Opis:
W artykule przedstawiono wyniki rejestracji składowych bilansu promieniowania na 3 stanowiskach: Kaffioyra-Heggodden (KH), Lodowiec Waldemara-czoło (LW1) i Lodowiec Waldemara-pole firnowe (NW Spitsbergen) w okresie od 16.07 do 31.08.2010 r. Pomiary prowadzono przy pomocy Radiometru CNR4 firmy Kipp&Zonen. Co minutę rejestrowano natężenie promieniowania słonecznego K?, promieniowania odbitego (K?), promieniowania ziemi (L?) i promieniowania zwrotnego atmosfery (L?). Na tej podstawie obliczono bilans radiacyjny (Q*), składający się z bilansu krótkofalowego (K*) i długofalowego (L*). Stwierdzono niewielkie różnice pomiędzy stanowiskami KH i LW2 założonymi na podłożu morenowym. Najmniej korzystny Q* wystąpił na LW2 nad powierzchnią śnieżno-lodowcową charakteryzującą się wysokim albedo. W artykule zbadano zróżnicowanie przestrzenne składowych bilansu radiacyjnego z dnia na dzień oraz w cyklu dobowym.
Measurements of radiation balance (Q*) were carried out in the Kaffioyra region (NW Spitsbergen) between 16 July and 31 August 2010 at three stations with different surfaces: KH on the glacial moraine of the Aavatsmark (11.5 m a.s.l.), LW1 - on the terminal moraine of the Waldemar Glacier (130 m a.s.l.), and LW2 - on the firn field of the Waldemar Glacier (375 m a.s.l.) - Fig. 1. A Kipp&Zonen CNR 4 Net Radiometer was used to register - minute by minute - the short wave radiation balance (K*), which is the difference between incoming solar radiation K? and reflected solar radiation (K?), and the long wave radiation balance (L*), which is the difference between downward long wave atmospheric radiation (L?) and upward long wave radiation (L?) - Table 1. In the studied period the maximum intensity of incoming solar radiation reached 709.4 W.m-2 at KH, 882.1 W.m-2 at LW1 and 836.2 W.m-2 at LW2. The mean diurnal sums of incoming solar radiation ranged from 11.04 MJ.m-2 at KH to 10.46 MJ.m-2 at LW1 and 10.60 MJ.m-2 at LW2 (Table 2, Fig. 2). The surface albedo varied, reaching between 13% (LW1) and 15% (KH) on the moraines, and up to 61% (LW2) on the firn field (Table 2, Fig. 3). Thus the lowest value of short wave radiation balance, +4.31 MJ.m-2, was registered at LW2, whereas it was doubled on the moraines: KH +9.50 MJ.m-2 and LW1 +9.09 MJ.m-2 (Table 4, Fig. 4). The flux of downward long wave atmospheric radiation coming from the atmosphere does not reveal any significant differences between individual stations: KH: 27.26 MJ.m-2, LW1: 27.47 MJ.m-2 and LW2 - 27.37 MJ.m-2 in 24h (Table 3). The Earth's surface (upward long wave radiation) was losing, on average: 30.31 MJ.m-2, 29.88 MJ.m-2 and 30.10 MJ.m-2, respectively, and the mean daily values of long wave radiation balance were negative: KH -3.05 MJ.m-2, LW1 -2.42 MJ.m-2 and LW2 -2.73 MJ.m-2. The surface radiation balance (Q*) was the most favourable on moraine bases: LW1 +6.67 MJ.m-2, KH +6.45 MJ.m-2, whereas the snow-covered firn field received the smallest amount of energy: LW2 +1.58 MJ.m-2 (Table 4, Fig. 5). In spite of the polar day, the diurnal cycle of the radiation balance components appears symmetrical with regard to the solar noon, related to the elevation of the sun over the horizon and the temperature of the surface and of the atmosphere. The flux of incoming solar radiation reached its peaks during midday hours with the following mean values: KH: 278.7 W.m-2, LW1: 275.9 W.m-2, and LW2: 295.2 W.m-2 (Fig. 6). At the time of lower culmination of the sun the values of K* were falling to zero. The balance of long wave radiation was negative and reached its highest values around midday hours (KH -50.0 MJ.m-2, LW1 -40.1 MJ.m-2 and LW2 -47.5 MJ.m-2). Q* was the highest in midday hours, when it was 2.5 times higher for moraine bases (KH +194.8 MJ.m-2 and LW1 +201.5 MJ.m-2) than for snow and glacial surfaces (LW2 +79.1 MJ.m-2). At low elevation of the sun Q* became negative: KH -6.8 MJ.m-2, LW1 -5.4 MJ.m-2 and LW2 -19.4 MJ.m-2. On individual days the diurnal cycle of the components of Q* was affected not only by the elevation of the sun, but also by the atmospheric state and the presence of clouds, in particular. For example, on 27 and 28 July 2010 a different weather types occurred (Table 5, Fig. 7). On the first day the sky was completely overcast with St and Sc clouds and no sunshine was observed. On the following day it cleared up with partial cloudiness (Cu, Ac, Ci), and the sunshine duration reached 16.2 h. On 27 July a slight influx of incoming solar radiation was registered (mean intensity 68.6 W.m-2, diurnal sum 5.92 MJ.m-2), K* was 5.14 MJ.m-2, and L* -0.84 MJ.m-2 due to the total cloudiness, which supported substantial downward atmospheric radiation (downward long wave atmospheric radiation 339.3 W.m-2). On the other hand, on 28 July, when the amount of cloudi-ness was moderate, the maximum intensity of incoming solar radiation was 668.7 W.m-2. In 24 hours the total radiation that reached the surface amounted to 22.04 MJ.m-2, and K* increased to 18.90 MJ.m-2. L* was negative (-5.26 MJ.m-2) due to substantial radial emittance of the ground (upward long wave radiation 352,0 W.m-2) and some downward atmospheric radiation (downward long wave atmospheric radiation 291.1 W.m-2). However, the overall radiation balance was three times higher than on 27 July and amounted to 13.65 MJ.m-2. In the studied period, the individual components of Q* were decreasing in value, as a result of the lower and lower elevation of the sun over the horizon and the ending of the polar day.
Źródło:
Problemy Klimatologii Polarnej; 2011, 21; 173-186
1234-0715
Pojawia się w:
Problemy Klimatologii Polarnej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zróżnicowanie przestrzenne i wieloletnia zmienność temperatury gruntu w rejonie Stacji Polarnej UMK (NW Spitsbergen) w okresie letnim (1975-2009)
Differentiation and long-term changes in ground temperature on the Kaffioyra plan (NW Spitsbergen) in the summer season from 1975 to 2009
Autorzy:
Przybylak, R.
Araźny, A.
Kejna, M.
Powiązania:
https://bibliotekanauki.pl/articles/261005.pdf
Data publikacji:
2010
Wydawca:
Stowarzyszenie Klimatologów Polskich
Tematy:
Spitsbergen
temperatura gruntu
sezon letni
zmienność wieloletnia
ground temperature
summer season
long-term changes
Opis:
W artykule przedstawiono podsumowanie wyników badań dotyczących zmian temperatury gruntu w otoczeniu Stacji Polarnej UMK na Kaffioyrze (NW Spitsbergen) w sezonie letnim. Do analizy wzięto dane pomiarowe z 5 głębokości (1, 5, 10, 20 i 50 cm) z 3 różnych ekotopów (plaża, morena i tundra) wykonane w trakcie 17 dotychczasowych wypraw polarnych zorganizowanych przez Instytut Geografii UMK w różnych latach okresu 1975-2009. W celu uzyskania pełnej porównywalności wyników wybrano okres 21.07-31.08, dla którego dostępne są kompletne dane dla niemal wszystkich sezonów letnich analizowanych w artykule. Serie temperatury gruntu na wszystkich stanowiskach i poziomach są ze sobą bardzo silnie skorelowane. Wyraźnie największy wpływ na zmierzone wartości temperatury gruntu w całej badanej warstwie wywiera tempe-ratura powietrza (współczynniki korelacji wahają się od 0,6 do 0,86). Inne elementy meteorologiczne takie jak prędkość wiatru, zachmurzenie i usłonecznienie również w sposób istotny wpływają na temperaturę gruntu, ale głównie w warstwie 0-20 cm (współczynniki korelacji wahają się od 0,15 do 0,28). Istotny statystycznie, chociaż ilościowo bardzo niewielki, wpływ na temperaturę gruntu w warstwie do 20 cm ma także opad atmosferyczny.
In the present paper a comprehensive synthesis of ground temperature changes on the Kaffiřyra Plain (NW Spitsbergen) in the summer season (21st July to 31st August) from 1975 to 2009 is described. This has been done with two main aims in mind: i) to examine the influence of different ecotypes on ground temperature values in the layer 1-50 cm, and ii) to examine long-term changes of ground temperature. The highest values of long-term average ground temperature in the summer season have been observed between 20th and 25th July. After this period a gradual decrease in ground temperature is observed (Table 2, Fig. 3). One clear cold singularity can be distinguished here occurring at the end of July and start of August which is connected with a significant decrease in air temperature observed very often during this time. In the period 1978-2009 the warmest ground in the entire analysed layer was observed at the ‘Moraine’ site (6.2°C), and the coldest was at the ‘Tundra’ site (5.1°C) – Table 3, Fig. 4. However, in the shallowest layer (up to 1 cm) markedly the warmest site was the beach, while the coldest was at a depth of 50 cm (Fig. 4). The reason for the large decrease of temperature in this layer was that this was where the permafrost roof was at its shallowest. As a consequence of this temperature behaviour in the layer, the ‘Beach’ site shows the greatest lapse rate of ground temperature (-0.78°C/10 cm) (Table 4). In the warmest summer seasons a greater range of ground temperature in the daily cycle is observed than in the coldest ones, which is very clearly seen, in particular in the layer from surface up to 20 cm (Fig. 5). In the study period a significant increase in ground temperature in the layer 1-20 cm was observed starting in 1998, while at a depth of 50 cm this rise can be seen from 2005 onward (Fig. 6). Very high and statistically significant correlation have been found between series of daily ground temperature taken from all sites and all measurement depths (Table 5). Air temperature is a meteorological variable, which has the greatest influence on the values of ground temperature. Correlation coefficients between series of its daily values and series of average daily ground temperature in all analysed depths at the ‘Beach’ site oscillate from 0.6 to 0.86 (Table 6, Fig. 7). Important factors controlling values of ground temperature in the layer 0-20 cm are also wind velocity, cloudiness and sunshine duration (correlation coefficients oscillate between 0.15 and 0.28).
Źródło:
Problemy Klimatologii Polarnej; 2010, 20; 103-120
1234-0715
Pojawia się w:
Problemy Klimatologii Polarnej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Air temperature and precipitation changes in the Kaffioyra region (NW Spitsbergen) from 1975 to 2010
Autorzy:
Przybylak, R.
Kejna, M.
Arazny, A.
Powiązania:
https://bibliotekanauki.pl/articles/11944.pdf
Data publikacji:
2011
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
air temperature
precipitation change
Kaffioyra region
Spitsbergen
1975-2010 period
climate reconstruction
summer season
meteorological element
Opis:
Air temperature and precipitation conditions in the Kaffiøyra region in the summer season (21st July–31st August) for the period of 1975–2010 are described: 1) on the basis of data gathered in 18 expeditions during which meteorological measurements were done, and 2) on the basis of complete series of data combining both original and reconstructed data. The latter ones were obtained using data from Ny Ålesund meteorological station, which are strongly correlated with the data from Kaffiøyra. Seasonal statistics presented for air temperature and precipitation based on these two sets of data reveal only slight changes. Temperature parameters (daily mean, maximum and minimum) for summer in Kaffiøyra in the study period (1975–2010) show upward trends, which are, however, statistically significant only for the daily mean. On the other hand, precipitation totals in the study period reveal a downward trend, but not statistically significant. Such thermal-precipitation behaviour in the study part of Spitsbergen in general terms is similar to those in other parts of Spitsbergen.
Źródło:
Papers on Global Change; 2011, 18
2300-8121
1730-802X
Pojawia się w:
Papers on Global Change
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zróżnicowanie wilgotności względnej i opadów atmosferycznych w rejonie Forlandsundet (NW Spitsbergen) w sezonie letnim 2010
Differentiation of relative humidity and precipitation in the Forlandsundet region (NW Spitsbergen) in the summer 2010
Autorzy:
Araźny, A.
Przybylak, R.
Kejna, M.
Powiązania:
https://bibliotekanauki.pl/articles/261033.pdf
Data publikacji:
2011
Wydawca:
Stowarzyszenie Klimatologów Polskich
Tematy:
topoklimat
wilgotność względna
opady atmosferyczne
cyrkulacja atmosferyczna
Spitsbergen
Forlandsundet
topoclimate
relative humidity
precipitation
atmospheric circulation
Opis:
W artykule przedstawiono zróżnicowanie wilgotności względnej powietrza oraz opadów atmosferycznych w rejonie Forlandsundet (NW Spitsbergen) w sezonie letnim (21 VII - 31 VIII) 2010 roku. Do analizy wzięto cogodzinne dane wilgotności względnej (z 18 stanowisk) oraz sumy opadów atmosferycznych z okresów 1-3 dniowych (z 11 stanowisk). Dla obydwu badanych elementów meteorologicznych stwierdzono znaczne przestrzenne zróżnicowanie ich wartości uwarunkowane rodzajem podłoża, wysokością nad poziom morza, odległością od morza, ekspozycją oraz lokalną cyrkulacją atmosferyczną. Zbadano wpływ cyrkulacji atmosferycznej na wartości wilgotności względnej i opadów atmosferycznych korzystając z kalendarza typów cyrkulacji dla Spitsbergenu.
In the paper some main results concerning spatial differentiation of relative humidity and precipitation in the Forlandsundet region (NW Spitsbergen) in summer season (21 VII - 31 VIII) of 2010 are presented (Table 1, Figs 1-2). For analysis hourly data from 18 and 11 sites, respectively for relative humidity and precipitation have been used. Relative humidity was measured using automatic weather stations Davis Ventage Pro2 and MadgeTech sensors. On the other hand, for measurements of precipitation Hellmanns' ombrometers and automatic weather stations Davis Ventage Pro2 have been utilised. Large spatial differences of relative humidity and precipitation noted in the study area were influenced by different factors, e.g. character of ground, altitude above sea level, distance from the sea coast, exposition to the sun and incoming air masses, and local atmospheric circulation. Highest mean values of relative humidity (94.6%) occurred at the site surrounded by the sea (Sarstangen Peninsula, SAT), while the lowest one (86.4%) at the site located 200 m from the Waldemar Glacier termini (ATA) (Table 3, Fig. 3). The first half of the day saw highest values of relative humidity than the second one (Fig. 4). The reason of this may be explained by the opposite daily course of air temperature. Daily courses are getting more and more clear in line with decreasing value of cloudi-ness (Fig. 5). In the Forlandsunet region most frequent were air masses which can be described as humid and very humid. Days with moderate dry and dry air were noted very rarely (Fig. 6). Relative humidity shows usually very high and statistically significant correlation between data from the analysed sites (Table 3). Weak and not statistically significant correlations (r < 0.3) were calculated only between the following pair of sites SAT-PH2 and SJ1-PH2. In the summer 2010 the lowest total of precipitation (8.5 mm) in the KH station, out of all Toruń Polar Expeditions since 1975, have been observed (Table 4). In the firn part of the Waldemar Glacier seasonal total of precipitation was 3-4 times greater than in sites located on coastal plains. In the Kaffioyra Plain and Waldemar Glacier region vertical lapse rate was twofold greater between KH and LW1 than between KH and LW2 (14.7 and 7.7 mm/100m, respectively). In the entire study area, highest summer total of precipitation occurred in the middle part of the Prins Karls Forland island. Relationships between atmospheric circulation and relative humidity as well as precipitation were investigated using data from the KH station and calendar of daily synoptic types for Spitsbergen constructed by Tadeusz Niedźwiedź (Table 5). The most humid conditions in the summer 2010 were observed during inflow of air masses from south-western direction (6.6% above summer mean), while most dry air (-9.7%) - from the north-eastern direction. Similar relationships have been found for precipitation. Analysis of relationships occurring between direction of winds and relative humidity data confirms also the above results. Highest values of relative humidity (>90%) were observed during winds inflowing from the southern sector, while the lowest ones - from the north-eastern direction (Fig. 7).
Źródło:
Problemy Klimatologii Polarnej; 2011, 21; 155-172
1234-0715
Pojawia się w:
Problemy Klimatologii Polarnej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Susze meteorologiczne w rejonie stacji ZMŚP w Koniczynce (Pojezierze Chełmińskie) w latach 1951-2010
Meteorological droughts in the region of the station of integrated environmental monitoring in Koniczynka (Chełmno Lakeland) in the years 1951-2010
Autorzy:
Bąk, B.
Kejna, M.
Uscka-Kowalkowska, J.
Powiązania:
https://bibliotekanauki.pl/articles/338212.pdf
Data publikacji:
2012
Wydawca:
Instytut Technologiczno-Przyrodniczy
Tematy:
Koniczynka
Pojezierze Chełmińskie
susza meteorologiczna
wskaźnik SPI
Chełmno Lakeland
meteorological drought
SPI
Opis:
W pracy przedstawiono problem występowania susz meteorologicznych na rolniczym obszarze zlewni Strugi Toruńskiej. Analizę zmienności miesięcznych susz meteorologicznych w latach 1951-2010 przeprowadzono na podstawie danych ze stacji Zintegrowanego Monitoringu Środowiska Przyrodniczego w Koniczynce (Pojezierze Chełmińskie). Jest to rejon charakteryzujący się niewielką sumą roczną opadów - 548 mm, o bardzo dużej ich zmienności z roku na rok (od 307 mm w 1951 r. do 1050 mm w 1980 r.). W poszczególnych miesiącach zmienność opadów jest jeszcze większa (współczynnik zmienności zmienia się od 49% w marcu do 93% w czerwcu). Intensywność suszy w każdym miesiącu oceniono za pomocą wskaźnika standaryzowanego opadu SPI (Standardized Precipitation Index). W Koniczynce w badanym wieloleciu susze pojawiały się we wszystkich miesiącach roku. Stwierdzono 73 okresy suszy, które łącznie trwały 186 miesięcy, czyli przez 26% miesięcy badanego wielolecia. Najczęściej pojawiały się jednomiesięczne susze (28 razy), oraz dwu- (15 razy) i trzymiesięczne (po 13 razy). Przeciętny okres suszy trwał 2,5 miesiąca, a najdłuższy - 10 miesięcy. Najwięcej ekstremalnych susz pojawiło się w marcu, kwietniu, sierpniu i grudniu, silnych susz w lutym i we wrześniu, a umiarkowanych w sierpniu i w grudniu. Dla rolnictwa istotne znaczenie mają susze meteorologiczne w okresie wiosennym (III-V) i letnim (VI-VIII). W wieloleciu 1951-2010 trwały one łącznie 96 miesięcy, co stanowi 13% badanego okresu i powodowały opóźnienie siewu i wschodów roślin lub całkowite ich usychanie. W niektórych latach, np. w 1971, 1975, 1996, 2003 r., wczesnowiosenną suszę meteorologiczną poprzedzała dodatkowo susza w miesiącach zimowych.
The paper presents the problem of meteorological droughts in an agricultural catchment of the Struga Toruńska. The analysis of monthly variation of meteorological droughts between 1951 and 2010 was based on data from the Station of Integrated Environmental Monitoring in Koniczynka (Chełmno Lakeland). The region is characterized by a small sum of annual rainfall (548 mm), and a high year-to-year variability (from 307 mm in 1951 to 1050 mm in 1980). For particular months, the variability coefficient was even higher ranging from 49% for March to 93% for June. The intensity of drought in each month was assessed using Standardized Precipitation Index (SPI). In Koniczynka, droughts were recorded in all months of the year. Seventy three periods of drought were recorded which lasted in total 186 months i.e. 26% of the study period. Most frequent were one-month droughts (28), two-month (15) and three-month (13) droughts. The average dry period lasted 2.5 months; the longest lasted 10 months. The extreme droughts appeared most often in March, April, August and December (3 cases in each), severe droughts - in February and in September (4), and moderate droughts in August and December (7). Meteorological droughts particularly important for agriculture are those in the spring (March-May) and summer (June-August) time. In the years 1951-2010 they lasted 96 months in total, which represented 13% of the study period (March-August). They caused delayed sowing and sprouting of plants or complete plant wilting. Moreover, in some years (1971, 1975, 1996, 2003) meteorological drought in the winter months preceded the early spring drought.
Źródło:
Woda-Środowisko-Obszary Wiejskie; 2012, 12, 2; 19-28
1642-8145
Pojawia się w:
Woda-Środowisko-Obszary Wiejskie
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zróżnicowanie temperatury i wilgotności wyględnej powietrza w rejonie Kaffiøyry (NW spitsbergen) w sezonie letnim 2014 roku
Spatial differentiation of air temperature and relative air humidity in the Kaffiøyra region (NW Spitsbergen) in summer season 2014
Autorzy:
Kejna, M.
Ulandowska-Monarcha, P.
Strzyżewski, T.
Powiązania:
https://bibliotekanauki.pl/articles/260765.pdf
Data publikacji:
2015
Wydawca:
Stowarzyszenie Klimatologów Polskich
Tematy:
pionowe gradienty temperatury powietrza
pionowe gradienty wilgotności powietrza
stany równowagi termodynamicznej atmosfery
topoklimat
Kaffiøyra
Spitsbergen
lapse rate of air temperature and relative humidity
thermodynamic equilibrium state
topoclimate
Kaffioyra
Opis:
W artykule przedstawiono zróżnicowanie przestrzenne temperatury oraz wilgotności powietrza w rejonie Kaffiøyry (NW Spitsbergen) w sezonie letnim 2014 r. Na podstawie pomiarów na stanowiskach położonych na różnych wysokościach nad poziomem morza przeanalizowano zmiany temperatury i wilgotności powietrza w pionie, obliczono pionowe gradienty tych elementów. Uzyskane wyniki odniesiono do pionowych sondaży atmosfery wykonywanych w pobliskiej stacji w Ny Ålesund. Temperatura oraz wilgotność względna powietrza wykazują znaczne zróżnicowanie przestrzenne. Relacje między stanowiskami zmieniają się z dnia na dzień w zależności od rodzaju mas powietrza oraz zachmurzenia. Stwierdzono również zmienność pionowych gradientów temperatury i wilgotności względnej powietrza w cyklu dobowym.
This article presents the spatial diversity of temperature and relative humidity of the air in the area of Kaffiøyra (NW Spitsbergen). In the summer season of 2014 (21 July – 31 August), observations were carried out at 9 measurement points equipped with temperature and humidity recorders. The points were located in two terrain profiles: the mountains where the highest point was situated at 590 m a.s.l. in the Prins Heinrichfjella range and from the terminal moraines to the firn field (375 m a.s.l.) of the Waldemar Glacier. On the basis of the measurements taken at the sites situated at different absolute heights vertical changes in air temperature and humidity were analysed and lapse rate of air temperature gradients were determined. The results were referenced to vertical atmospheric soundings carried out at the nearby station in Ny Ålesund. The air over NW Spitsbergen (Ny Ålesund) demonstrated a mean vertical lapse rate of 0.61˚C/100 m at the atmospheric layer up to six or seven hundred metres. On most days normal stratification was observed, where temperature fell with height, on 3 days a ground-level air temperature inversion occurred and on 9 days a temperature inversion occurred in the free troposphere. In the area of Kaffiøyra, air temperature decreased with height from 5.5°C on the coast (KH) to 2.5°C at 590 m a.s.l. (PH2). On the Waldemar Glacier, the mean air temperature ranged from 5.0°C on the moraines (ATA) to 3.6°C on the firn field (LW2). The relationship between the sites changed on a daily basis, depending on the cloud amount, insolation and local circulation (e.g. connected with the influence of foenic wind). Averaged lapse rate in relation to the coast (KH) reached between 0.84°C/100 m (LW1-KH) and 0.39°C/100 m (KU-KH) or 0.40°C/100 m (ATA-KH). The mountain tops (PH1 and PH2) are also distinguished by their smaller lapse rate. An inversion in the vertical distribution of air temperature was also frequent and, for example, at the KT site it occurred at 33.9% of the hours and at 28.7% at ATA. On the Waldemar Glacier, inversion occurred at a frequency of 16.3% at its front (LW1) to 8.8% at its firn field (LW2). On the mountain tops, the inversion occurred at a frequency of 18% (PH2). The relative humidity of the air over Spitsbergen is high due to the prevalence of maritime air masses. According to the soundings conducted at Ny Ålesund, the humidity increased with the height, however in 13 cases a vertical inversion of relative humidity occurred – the overground air layers proved more saturated with water vapour. On Kaffiøyra, the average relative humidity of the air was 87.7% and increased up to approx. 500 m, above which it slightly dropped. This results from a high frequency of occurrence of Stratus clouds which do not reach the higher tops. The vertical gradients of relative humidity were diverse: at most sites, the relative humidity increased with the height, for example at the PH1 site, the gradient was 3.12%/100 m. A greater diversity of the relative humidity was typical of the hours around midday.
Źródło:
Problemy Klimatologii Polarnej; 2015, 25; 211-226
1234-0715
Pojawia się w:
Problemy Klimatologii Polarnej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Comparison of the predicted insulation of clothing in Toruń and Koniczynka in the years 1998–2012
Porównanie przewidywanej termoizolacyjności odzieży w Toruniu i Koniczynce w latach 1998-2012
Autorzy:
Arazny, A.
Uscka-Kowalkowska, J.
Kejna, M.
Powiązania:
https://bibliotekanauki.pl/articles/81763.pdf
Data publikacji:
2015
Wydawca:
Szkoła Główna Gospodarstwa Wiejskiego w Warszawie. Wydawnictwo Szkoły Głównej Gospodarstwa Wiejskiego w Warszawie
Opis:
This paper compares the predicted insulation of clothing (Iclp) in Toruń and Koniczynka, presented using a scale of evaluation of thermal environment proposed by B. Krawczyk (2000). The annual mean value of predicted insulation of clothing in urban areas of Toruń was equal to 1.0 clo, which was 0.1 less than in the agricultural area of Koniczynka. The influence of atmospheric circulation on the Iclp index was also analysed. The study used the circulation types as classified by Niedźwiedź (1981) in the Catalogue of atmospheric circulation for the Bydgoszcz-Toruń region (Przybylak and Maszewski 2009, 201 3). The frequency of occurrence of individual circulation types was examined along with their in fluence on the predicted insulation of clothing in different seasons of the year and in an annual course. During the year, the highest mean value of Iclp (1.4 clo in Koniczynka) corresponded to cyclonic situations with northerly advection, whereas the lowest value (0.8 clo in Toruń and Koniczynka) was observed for the anticyclonic wedge.
Celem pracy jest porównanie przewidywanej termoizolacyjności odzieży (Iclp) w Toruniu i Koniczynce. Opracowanie wykonano dla Stacji IMGW Toruń Wrzosy oraz dla Stacji Zintegrowanego Monitoringu Środowiska Przyrodniczego w Koniczynce dla okresu 1998 – 2012. Każda z badanych stacji charakteryzuje się indywidualnymi cechami. Przewidywaną termoizolacyjności odzieży przedstawiono według skali oceny środowiska termicznego zaproponowanej przez B. Krawczyk (2000). Zbadano również wpływ cyrkulacji atmosferycznej na wskaźnik Iclp. W badaniach wykorzystano typy cyrkulacji wg klasyfikacji T. Niedźwiedzia (1981) z Katalogu cyrkulacji atmosferycznej dla Regionu Bydgosko - Toruńskiego (Przybylak i Maszewski 2009, 2013). Przeanalizowano częstość występowania poszczególnych typów cyrkulacji oraz ich wpływ na przewidywaną termoizolacyjność odzieży w poszczególnych porach roku i przebiegu rocznym.
Źródło:
Annals of Warsaw University of Life Sciences - SGGW. Land Reclamation; 2015, 47, 1
0208-5771
Pojawia się w:
Annals of Warsaw University of Life Sciences - SGGW. Land Reclamation
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Bilans promieniowania w Koniczynce koło Torunia w latach 2011-2012
Radiation balance in Koniczynka near Torun in the years 2011-2012
Autorzy:
Kejna, M.
Uscka-Kowalkowska, J.
Arazny, A.
Powiązania:
https://bibliotekanauki.pl/articles/886370.pdf
Data publikacji:
2014
Wydawca:
Szkoła Główna Gospodarstwa Wiejskiego w Warszawie. Wydawnictwo Szkoły Głównej Gospodarstwa Wiejskiego w Warszawie
Tematy:
wies Koniczynka
bilans radiacyjny
promieniowanie krotkofalowe
promieniowanie dlugofalowe
monitoring srodowiska
Opis:
W artykule przedstawiono zmiany poszczególnych składowych bilansu radiacyjnego w cyklu rocznym i dobowym w Koniczynce k. Torunia w latach 2011–2012. Badania prowadzono za pomocą Net Radiometer CNR 4 fi rmy Kipp & Zonen nad powierzchnią trawiastą. W Koniczynce roczne sumy K↓ wyniosły 3901,1 MJ·m–2 w 2011 roku i 3840,1 MJ·m–2 w 2012 roku. Średnie miesięczne wartości albedo wahały się od 16 do 57%, przekraczając 80% w dniach z pokrywą śnieżną. Bilans promieniowania krótkofalowego (K*) sięgnął 3039,1 MJ·m–2 w 2011 roku i 3085,6 MJ·m–2 w 2012 roku. Wypromieniowanie długofalowe (L↑) z cieplejszej powierzchni ziemi było większe (11 431,5 MJ·m–2 w 2011 r. i 11 405,8 MJ·m–2 w 2012 r.) niż zwrotne promieniowanie długofalowe atmosfery (odpowiednio 10 032,8 i 10 050,4 MJ·m–2), stąd też bilans promieniowania długofalowego (L*) przyjął wartości ujemne (odpowiednio –1398,7 i –1355,4 MJ·m–2). Bilans radiacyjny (Q*) był ujemny w styczniu i lutym 2011 roku oraz w okresie od listopada 2011 do stycznia 2012 roku i w grudniu 2012 roku, przyjmując najmniejsze wartości w grudniu 2011 roku (–40,9 MJ·m–2). Największe wartości Q* osiągnął w czerwcu 2011 roku (386,4 MJ·m–2) i lipcu 2012 roku (341,1 MJ·m–2). W sumie w ciągu roku powierzchnia ziemi w Koniczynce otrzymała 1640,4 MJ·m–2 w 2011 roku i 1730,2 MJ·m–2 w 2012 roku. Bilans promieniowania w Koniczynce wykazuje cykliczność dobową i roczną zaburzaną przez zachmurzenie oraz parę wodną i aerozole.
This article describes changes in individual components of the solar radiation balance in an annual and diurnal course at Koniczynka near Toruń in the years 2011–2012. Observations were conducted on grass-covered surfaces, using a Kipp & Zonen CNR 4 net radiometer. At Koniczynka, the annual total incoming solar radiation (K↓) amounted to 3901.1 MJ·m–2 in 2011 and 3840.1 MJ·m–2in 2012. Mean monthly values of the albedo ranged from 16 to 57% and exceeded 80% when the ground was covered by snow. The short wave radiation balance (K*) reached 3039.1 MJ·m–2 in 2011 and 3085.6 MJ·m–2 in 2012. The upward long wave terrestrial radiation (L↑) emitted from warmer surfaces was greater (11,431.5 MJ.m–2 in 2011 and 11,405.8 MJ·m–2 in 2012) than the downward long wave atmospheric radiation (10,032.8 MJ·m–2 and 10,050.4 MJ·m–2, respectively), therefore the long wave radiation balance (L*) was negative (–1398.7 MJ·m–2 and –1355.4 MJ·m–2, respectively). The net radiation balance (Q*) was negative in January and February 2011, and from November 2011 until January 2012, as well as in December 2012, with the lowest values in December 2011 (–40.9 MJ·m–2). The highest values of Q* were observed in June 2011 (386.4 MJ·m–2) and July 2012 (341.1 MJ·m–2). All in all, the ground surface at Koniczynka received 1640.4 MJ·m–2 in 2011 and 1730.2 MJ·m–2 in 2012. The net radiation balance at Koniczynka follows a diurnal and an annual cycle, disturbed by cloudiness, water vapour and aerosols.
Źródło:
Scientific Review Engineering and Environmental Sciences; 2014, 23, 1[63]
1732-9353
Pojawia się w:
Scientific Review Engineering and Environmental Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies