Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Kchikech, Mustapha" wg kryterium: Autor


Wyświetlanie 1-3 z 3
Tytuł:
Linear and cyclic radio k-labelings of trees
Autorzy:
Kchikech, Mustapha
Khennoufa, Riadh
Togni, Olivier
Powiązania:
https://bibliotekanauki.pl/articles/743693.pdf
Data publikacji:
2007
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
graph theory
radio channel assignment
cyclic and linear radio k-labeling
Opis:
Motivated by problems in radio channel assignments, we consider radio k-labelings of graphs. For a connected graph G and an integer k ≥ 1, a linear radio k-labeling of G is an assignment f of nonnegative integers to the vertices of G such that
$|f(x)-f(y)| ≥ k+1-d_G(x,y)$,
for any two distinct vertices x and y, where $d_G(x,y)$ is the distance between x and y in G. A cyclic k-labeling of G is defined analogously by using the cyclic metric on the labels. In both cases, we are interested in minimizing the span of the labeling. The linear (cyclic, respectively) radio k-labeling number of G is the minimum span of a linear (cyclic, respectively) radio k-labeling of G. In this paper, linear and cyclic radio k-labeling numbers of paths, stars and trees are studied. For the path Pₙ of order n ≤ k+1, we completely determine the cyclic and linear radio k-labeling numbers. For 1 ≤ k ≤ n-2, a new improved lower bound for the linear radio k-labeling number is presented. Moreover, we give the exact value of the linear radio k-labeling number of stars and we present an upper bound for the linear radio k-labeling number of trees.
Źródło:
Discussiones Mathematicae Graph Theory; 2007, 27, 1; 105-123
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Radio k-labelings for Cartesian products of graphs
Autorzy:
Kchikech, Mustapha
Khennoufa, Riadh
Togni, Olivier
Powiązania:
https://bibliotekanauki.pl/articles/743543.pdf
Data publikacji:
2008
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
graph theory
radio channel assignment
radio k-labeling
Cartesian product
radio number
antipodal number
Opis:
Frequency planning consists in allocating frequencies to the transmitters of a cellular network so as to ensure that no pair of transmitters interfere. We study the problem of reducing interference by modeling this by a radio k-labeling problem on graphs: For a graph G and an integer k ≥ 1, a radio k-labeling of G is an assignment f of non negative integers to the vertices of G such that
$|f(x)-f(y)| ≥ k+1-d_G(x,y)$,
for any two vertices x and y, where $d_G(x,y)$ is the distance between x and y in G. The radio k-chromatic number is the minimum of max{f(x)-f(y):x,y ∈ V(G)} over all radio k-labelings f of G. In this paper we present the radio k-labeling for the Cartesian product of two graphs, providing upper bounds on the radio k-chromatic number for this product. These results help to determine upper and lower bounds for radio k-chromatic numbers of hypercubes and grids. In particular, we show that the ratio of upper and lower bounds of the radio number and the radio antipodal number of the square grid is asymptotically [3/2].
Źródło:
Discussiones Mathematicae Graph Theory; 2008, 28, 1; 165-178
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Independence Number and Packing Coloring of Generalized Mycielski Graphs
Autorzy:
Bidine, Ez Zobair
Gadi, Taoufiq
Kchikech, Mustapha
Powiązania:
https://bibliotekanauki.pl/articles/32222704.pdf
Data publikacji:
2021-08-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
independence number
packing chromatic number
Mycielskians
generalized Mycielskians
Opis:
For a positive integer k ⩾ 1, a graph G with vertex set V is said to be k-packing colorable if there exists a mapping f : V ↦ {1, 2, . . ., k} such that any two distinct vertices x and y with the same color f(x) = f(y) are at distance at least f(x) + 1. The packing chromatic number of a graph G, denoted by χρ(G), is the smallest integer k such that G is k-packing colorable. In this work, we study both independence and packing colorings in the m-generalized Mycielskian of a graph G, denoted μm(G). We first give an explicit formula for α (μm(G)) when m is odd and bounds when m is even. We then use these results to give exact values of α(μm(Kn)) for any m and n. Next, we give bounds on the packing chromatic number, χρ, of μm(G). We also prove the existence of large planar graphs whose packing chromatic number is 4. The rest of the paper is focused on packing chromatic numbers of the Mycielskian of paths and cycles.
Źródło:
Discussiones Mathematicae Graph Theory; 2021, 41, 3; 725-747
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies