Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Jones, Ryan" wg kryterium: Autor


Wyświetlanie 1-3 z 3
Tytuł:
Nowhere-zero modular edge-graceful graphs
Autorzy:
Jones, Ryan
Zhang, Ping
Powiązania:
https://bibliotekanauki.pl/articles/743248.pdf
Data publikacji:
2012
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
modular edge-graceful labelings and graphs
nowhere-zero labelings
modular edge-gracefulness
Opis:
For a connected graph G of order n ≥ 3, let f: E(G) → ℤₙ be an edge labeling of G. The vertex labeling f': V(G) → ℤₙ induced by f is defined as $f'(u) = ∑_{v ∈ N(u)} f(uv)$, where the sum is computed in ℤₙ. If f' is one-to-one, then f is called a modular edge-graceful labeling and G is a modular edge-graceful graph. A modular edge-graceful labeling f of G is nowhere-zero if f(e) ≠ 0 for all e ∈ E(G) and in this case, G is a nowhere-zero modular edge-graceful graph. It is shown that a connected graph G of order n ≥ 3 is nowhere-zero modular edge-graceful if and only if n ≢ 2 mod 4, G ≠ K₃ and G is not a star of even order. For a connected graph G of order n ≥ 3, the smallest integer k ≥ n for which there exists an edge labeling f: E(G) → ℤₖ - {0} such that the induced vertex labeling f' is one-to-one is referred to as the nowhere-zero modular edge-gracefulness of G and this number is determined for every connected graph of order at least 3.
Źródło:
Discussiones Mathematicae Graph Theory; 2012, 32, 3; 487-505
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Hamiltonian-colored powers of strong digraphs
Autorzy:
Johns, Garry
Jones, Ryan
Kolasinski, Kyle
Zhang, Ping
Powiązania:
https://bibliotekanauki.pl/articles/743288.pdf
Data publikacji:
2012
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
powers of a strong oriented graph
distance-colored digraphs
Hamiltonian-colored digraphs
Hamiltonian coloring exponents
Opis:
For a strong oriented graph D of order n and diameter d and an integer k with 1 ≤ k ≤ d, the kth power $D^k$ of D is that digraph having vertex set V(D) with the property that (u, v) is an arc of $D^k$ if the directed distance $^{→}d_D(u,v)$ from u to v in D is at most k. For every strong digraph D of order n ≥ 2 and every integer k ≥ ⌈n/2⌉, the digraph $D^k$ is Hamiltonian and the lower bound ⌈n/2⌉ is sharp. The digraph $D^k$ is distance-colored if each arc (u, v) of $D^k$ is assigned the color i where $i = ^{→}d_D(u,v)$. The digraph $D^k$ is Hamiltonian-colored if $D^k$ contains a properly arc-colored Hamiltonian cycle. The smallest positive integer k for which $D^k$ is Hamiltonian-colored is the Hamiltonian coloring exponent hce(D) of D. For each integer n ≥ 3, the Hamiltonian coloring exponent of the directed cycle $^{→}Cₙ$ of order n is determined whenever this number exists. It is shown for each integer k ≥ 2 that there exists a strong oriented graph Dₖ such that hce(Dₖ) = k with the added property that every properly colored Hamiltonian cycle in the kth power of Dₖ must use all k colors. It is shown for every positive integer p there exists a a connected graph G with two different strong orientations D and D' such that hce(D) - hce(D') ≥ p.
Źródło:
Discussiones Mathematicae Graph Theory; 2012, 32, 4; 705-724
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Macedoński piechur : elitarny wojownik Aleksandra Wielkiego
Autorzy:
Heckel, Waldemar (1949- ).
Współwytwórcy:
Jones, Ryan (1975- ). Autor
Hook, Christa (1968- ). Ilustracje
Ziółkowski, Konrad. Tłumaczenie
Firma Handlowo Usługowa NAPOLEON V, Dariusz Marszałek. Wydawca
Data publikacji:
2018
Wydawca:
[Oświęcim] : Napoleon V
Tematy:
Piechota
Wojsko
Opracowanie
Opis:
Miejsce wydania według siedziby wydawcy.
Na okładce także logo wydawcy oryginału: Osprey Publishing.
Bibliografia na stronach 62-63. Indeks.
Dostawca treści:
Bibliografia CBW
Książka
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies