- Tytuł:
-
Optimizing ultrasound image classification through transfer learning: fine-tuning strategies and classifier impact on pre-trained inner-layers
Optymalizacja klasyfikacji obrazów ultrasonograficznych techniką transfer learning: strategie dostrajania i wpływ klasyfikatora na wstępnie wytrenowane warstwy wewnętrzne - Autorzy:
-
Bal-Ghaoui, Mohamed
Alaoui, Hachem El Yousfi
Jilbab, Abdelilah
Bourouhou, Abdennaser - Powiązania:
- https://bibliotekanauki.pl/articles/27315459.pdf
- Data publikacji:
- 2023
- Wydawca:
- Politechnika Lubelska. Wydawnictwo Politechniki Lubelskiej
- Tematy:
-
CNN
transfer learning
fine-tuning
SVM
ultrasound images
cancer classification
dostrajanie
obraz ultrasonograficzny
klasyfikacja nowotworów - Opis:
-
Transfer Learning (TL) is a popular deep learning technique used in medical image analysis, especially when data is limited. It leverages pre-trained knowledge from State-Of-The-Art (SOTA) models and applies it to specific applications through Fine-Tuning (FT). However, fine-tuning large models can be time-consuming, and determining which layers to use can be challenging. This study explores different fine-tuning strategies for five SOTA models (VGG16, VGG19, ResNet50, ResNet101, and InceptionV3) pre-trained on ImageNet. It also investigates the impact of the classifier by usinga linear SVM for classification. The experiments are performed on four open-access ultrasound datasets related to breast cancer, thyroid nodules cancer, and salivary glands cancer. Results are evaluated using a five-fold stratified cross-validation technique, and metrics like accuracy, precision, and recall are computed. The findings show that fine-tuning 15% of the last layers in ResNet50 and InceptionV3 achieves good results. Using SVM for classification further improves overall performance by 6% for the two best-performing models. This research provides insights into fine-tuning strategiesandthe importance of the classifier in transfer learning for ultrasound image classification.
Transfer Learning (TL) to popularna technika głębokiego uczenia stosowana w analizie obrazów medycznych, zwłaszcza gdy ilość danych jestograniczona. Wykorzystuje ona wstępnie wyszkoloną wiedzę z modeli State-Of-The-Art (SOTA) i zastosowanie ich do konkretnych aplikacji poprzez dostrajanie (Fine-Tuning –FT). Jednak dostrajanie dużych modeli może być czasochłonne, a określenie, których warstw użyć, może stanowić wyzwanie.W niniejszym badaniu przeanalizowano różne strategie dostrajania dla pięciu modeli SOTA (VGG16, VGG19, ResNet50, ResNet101 i InceptionV3) wstępnie wytrenowanych na ImageNet. Zbadano również wpływ klasyfikatora przy użyciu liniowej SVM do klasyfikacji. Eksperymenty przeprowadzonona czterech ogólnodostępnych zbiorach danych ultrasonograficznych związanych z rakiem piersi, rakiem guzków tarczycy i rakiemgruczołów ślinowych. Wyniki są oceniane przy użyciu techniki pięciowarstwowej walidacji krzyżowej, a wskaźniki takie jak dokładność, precyzja i odzyskiwanie są obliczane. Wyniki pokazują, że dostrojenie 15% ostatnich warstw w ResNet50 i InceptionV3 osiąga dobre wyniki. Użycie SVM do klasyfikacjidodatkowo poprawia ogólną wydajność o 6% dla dwóch najlepszych modeli. Badania te zapewniają informacje na temat strategii dostrajania i znaczenia klasyfikatoraw uczeniu transferowym dla klasyfikacji obrazów ultrasonograficznych. - Źródło:
-
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska; 2023, 13, 4; 27--33
2083-0157
2391-6761 - Pojawia się w:
- Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska
- Dostawca treści:
- Biblioteka Nauki