Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Jerome, J." wg kryterium: Autor


Wyświetlanie 1-3 z 3
Tytuł:
Driver Workload Response to In-Vehicle Device Operations
Autorzy:
Jerome, C. J.
Ganey, H. C. N.
Mouloua, M.
Hancock, P. A.
Powiązania:
https://bibliotekanauki.pl/articles/91075.pdf
Data publikacji:
2002
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
driver distraction
telematics
workload
cellular phones
obciążenie fizyczne
telefonia komórkowa
fizjologia pracy
kierowcy i maszyniści
psychologia pracy
radio
systemy nawigacji
Opis:
A central concern of Intelligent Transportation Systems (ITS) is the effect of in-vehicle devices (e.g., cell phones, navigation systems, radios, etc.) on driver performance and safety. As diverse and innovative technologies are designed and implemented for in-vehicle use, questions regarding the presence and use of these devices assume progressively greater importance. Further concerns for advanced driver training require us to develop and validate reliable and effective procedures for assessing such effects. This work examines a number of candidate procedures, in particular the evaluation of change in cognitive workload as a strategy by which such goals might be achieved.
Źródło:
International Journal of Occupational Safety and Ergonomics; 2002, 8, 4; 539-546
1080-3548
Pojawia się w:
International Journal of Occupational Safety and Ergonomics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Algebraic Riccati equation based Q and R matrices selection algorithm for optimal LQR applied to tracking control of 3rd order magnetic levitation system
Autorzy:
Kumar E, V.
Jerome, J.
Powiązania:
https://bibliotekanauki.pl/articles/140600.pdf
Data publikacji:
2016
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
algebraic Riccatti equation
linear quadratic regulator
magnetic levitation
system
weighting matrices
command following
cost function
Opis:
This paper presents an analytical approach for solving the weighting matrices selection problem of a linear quadratic regulator (LQR) for the trajectory tracking application of a magnetic levitation system. One of the challenging problems in the design of LQR for tracking applications is the choice of Q and R matrices. Conventionally, the weights of a LQR controller are chosen based on a trial and error approach to determine the optimum state feedback controller gains. However, it is often time consuming and tedious to tune the controller gains via a trial and error method. To address this problem, by utilizing the relation between the algebraic Riccati equation (ARE) and the Lagrangian optimization principle, an analytical methodology for selecting the elements of Q and R matrices has been formulated. The novelty of the methodology is the emphasis on the synthesis of time domain design specifications for the formulation of the cost function of LQR, which directly translates the system requirement into a cost function so that the optimal performance can be obtained via a systematic approach. The efficacy of the proposed methodology is tested on the benchmark Quanser magnetic levitation system and a detailed simulation and experimental results are presented. Experimental results prove that the proposed methodology not only provides a systematic way of selecting the weighting matrices but also significantly improves the tracking performance of the system.
Źródło:
Archives of Electrical Engineering; 2016, 65, 1; 151-168
1427-4221
2300-2506
Pojawia się w:
Archives of Electrical Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An adaptive particle swarm optimization algorithm for robust trajectory tracking of a class of under actuated system
Autorzy:
Kumar, V. E.
Jerome, J.
Powiązania:
https://bibliotekanauki.pl/articles/141105.pdf
Data publikacji:
2014
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
inverted pendulum
LQR controller
particle swarm optimization (PSO)
genetic algorithm
adaptive inertia weight factor
state feedback control
Opis:
This paper presents an adaptive particle swarm optimization (APSO) based LQR controller for optimal tuning of state feedback controller gains for a class of under actuated system (Inverted pendulum). Normally, the weights of LQR controller are chosen based on trial and error approach to obtain the optimum controller gains, but it is often cumbersome and tedious to tune the controller gains via trial and error method. To address this problem, an intelligent approach employing adaptive PSO (APSO) for optimum tuning of LQR is proposed. In this approach, an adaptive inertia weight factor (AIWF), which adjusts the inertia weight according to the success rate of the particles, is employed to not only speed up the search process but also to increase the accuracy of the algorithm towards obtaining the optimum controller gain. The performance of the proposed approach is tested on a bench mark inverted pendulum system, and the experimental results of APSO are compared with that of the conventional PSO and GA. Experimental results prove that the proposed algorithm remarkably improves the convergence speed and precision of PSO in obtaining the robust trajectory tracking of inverted pendulum.
Źródło:
Archives of Electrical Engineering; 2014, 63, 3; 345-365
1427-4221
2300-2506
Pojawia się w:
Archives of Electrical Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies