Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Jegorowa, A." wg kryterium: Autor


Wyświetlanie 1-2 z 2
Tytuł:
Znachenie vibroakusticheskikh signalov takikh kak vibracija i shum v diagnostike iznosa instrumenta vo vremja sverlenija v drevesnostruzhechnojj laminirovannojj plite
Badanie użyteczności sygnałów hałasu i drgań do monitorowania zużycia narzędzia podczas wiercenia płyty wiórowej laminowanej
Autorzy:
Jegorowa, A.
Gorski, J.
Morek, R.
Podziewski, P.
Szymanowski, K.
Czarniak, P.
Powiązania:
https://bibliotekanauki.pl/articles/8154.pdf
Data publikacji:
2015
Wydawca:
Szkoła Główna Gospodarstwa Wiejskiego w Warszawie. Wydawnictwo Szkoły Głównej Gospodarstwa Wiejskiego w Warszawie
Źródło:
Annals of Warsaw University of Life Sciences - SGGW. Forestry and Wood Technology; 2015, 92
1898-5912
Pojawia się w:
Annals of Warsaw University of Life Sciences - SGGW. Forestry and Wood Technology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Developing automatic recognition system of drill wear in standard laminated chipboard drilling process
Autorzy:
Kurek, J.
Kruk, M.
Osowski, S.
Hoser, P.
Wieczorek, G.
Jegorowa, A.
Górski, J.
Wilkowski, J.
Śmietańska, K.
Kossakowska, J.
Powiązania:
https://bibliotekanauki.pl/articles/200766.pdf
Data publikacji:
2016
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
diagnostic expert systems
neural networks
wavelet packets
wear monitoring
diagnostyczny system ekspercki
sieci neuronowe
pakiety falkowe
monitorowanie zużycia
Opis:
The paper presents an automatic approach to recognition of the drill condition in a standard laminated chipboard drilling process. The state of the drill is classified into two classes: “useful” (sharp enough) and “useless” (worn out). The case “useless” indicates symptoms of excessive drill wear, unsatisfactory from the point of view of furniture processing quality. On the other hand the “useful” state identifies tools which are still able to drill holes acceptable due to the required processing quality. The main problem in this task is to choose an appropriate set of diagnostic features (variables), based on which the recognition of drill state (“useful” versus “useless”) can be made. The features have been generated based on 5 registered signals: feed force, cutting torque, noise, vibration and acoustic emission. Different statistical parameters describing these signals and also their Fourier and wavelet representations have been used for defining the features. Sequential feature selection is applied to detect the most class discriminative set of features. The final step of recognition is done by using three types of classifiers, including support vector machine, ensemble of decision trees and random forest. Six standard drills of 12 mm diameter with tungsten carbide tips were used in experiments. The results have confirmed good quality of the proposed diagnostic system.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2016, 64, 3; 633-640
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies